双单向链表
双单向链表
在之前的双向链表章节中,我们一度非常纠结,原因来自同样纠结成一团的所有权依赖。还有一个重要原因就是:先入为主的链表定义。
谁说所有的链接一定要一个方向呢?这里一起来尝试下新的东东:链表的其中一半朝左,另一半朝右。
新规矩( 老规矩是创建文件 ),创建一个新的模块:
// lib.rs
// ...
pub mod silly1; // NEW!
// silly1.rs
use crate::second::List as Stack;
struct List<T> {
left: Stack<T>,
right: Stack<T>,
}
这里将之前的 List
引入进来,并重命名为 Stack
,接着,创建一个新的链表。现在既可以向左增长又可以向右增长。
pub struct Stack<T> {
head: Link<T>,
}
type Link<T> = Option<Box<Node<T>>>;
struct Node<T> {
elem: T,
next: Link<T>,
}
impl<T> Stack<T> {
pub fn new() -> Self {
Stack { head: None }
}
pub fn push(&mut self, elem: T) {
let new_node = Box::new(Node {
elem: elem,
next: self.head.take(),
});
self.head = Some(new_node);
}
pub fn pop(&mut self) -> Option<T> {
self.head.take().map(|node| {
let node = *node;
self.head = node.next;
node.elem
})
}
pub fn peek(&self) -> Option<&T> {
self.head.as_ref().map(|node| {
&node.elem
})
}
pub fn peek_mut(&mut self) -> Option<&mut T> {
self.head.as_mut().map(|node| {
&mut node.elem
})
}
}
impl<T> Drop for Stack<T> {
fn drop(&mut self) {
let mut cur_link = self.head.take();
while let Some(mut boxed_node) = cur_link {
cur_link = boxed_node.next.take();
}
}
}
稍微修改下 push
和 pop
:
pub fn push(&mut self, elem: T) {
let new_node = Box::new(Node {
elem: elem,
next: None,
});
self.push_node(new_node);
}
fn push_node(&mut self, mut node: Box<Node<T>>) {
node.next = self.head.take();
self.head = Some(node);
}
pub fn pop(&mut self) -> Option<T> {
self.pop_node().map(|node| {
node.elem
})
}
fn pop_node(&mut self) -> Option<Box<Node<T>>> {
self.head.take().map(|mut node| {
self.head = node.next.take();
node
})
}
现在可以开始构造新的链表:
pub struct List<T> {
left: Stack<T>,
right: Stack<T>,
}
impl<T> List<T> {
fn new() -> Self {
List { left: Stack::new(), right: Stack::new() }
}
}
当然,还有一大堆左左右右类型的操作:
pub fn push_left(&mut self, elem: T) { self.left.push(elem) }
pub fn push_right(&mut self, elem: T) { self.right.push(elem) }
pub fn pop_left(&mut self) -> Option<T> { self.left.pop() }
pub fn pop_right(&mut self) -> Option<T> { self.right.pop() }
pub fn peek_left(&self) -> Option<&T> { self.left.peek() }
pub fn peek_right(&self) -> Option<&T> { self.right.peek() }
pub fn peek_left_mut(&mut self) -> Option<&mut T> { self.left.peek_mut() }
pub fn peek_right_mut(&mut self) -> Option<&mut T> { self.right.peek_mut() }
其中最有趣的是:还可以来回闲逛了。
pub fn go_left(&mut self) -> bool {
self.left.pop_node().map(|node| {
self.right.push_node(node);
}).is_some()
}
pub fn go_right(&mut self) -> bool {
self.right.pop_node().map(|node| {
self.left.push_node(node);
}).is_some()
}
这里返回 bool
是为了告诉调用者我们是否成功的移动。最后,再来测试下:
#[cfg(test)]
mod test {
use super::List;
#[test]
fn walk_aboot() {
let mut list = List::new(); // [_]
list.push_left(0); // [0,_]
list.push_right(1); // [0, _, 1]
assert_eq!(list.peek_left(), Some(&0));
assert_eq!(list.peek_right(), Some(&1));
list.push_left(2); // [0, 2, _, 1]
list.push_left(3); // [0, 2, 3, _, 1]
list.push_right(4); // [0, 2, 3, _, 4, 1]
while list.go_left() {} // [_, 0, 2, 3, 4, 1]
assert_eq!(list.pop_left(), None);
assert_eq!(list.pop_right(), Some(0)); // [_, 2, 3, 4, 1]
assert_eq!(list.pop_right(), Some(2)); // [_, 3, 4, 1]
list.push_left(5); // [5, _, 3, 4, 1]
assert_eq!(list.pop_right(), Some(3)); // [5, _, 4, 1]
assert_eq!(list.pop_left(), Some(5)); // [_, 4, 1]
assert_eq!(list.pop_right(), Some(4)); // [_, 1]
assert_eq!(list.pop_right(), Some(1)); // [_]
assert_eq!(list.pop_right(), None);
assert_eq!(list.pop_left(), None);
}
}
$ cargo test
Running target/debug/lists-5c71138492ad4b4a
running 16 tests
test fifth::test::into_iter ... ok
test fifth::test::basics ... ok
test fifth::test::iter ... ok
test fifth::test::iter_mut ... ok
test fourth::test::into_iter ... ok
test fourth::test::basics ... ok
test fourth::test::peek ... ok
test first::test::basics ... ok
test second::test::into_iter ... ok
test second::test::basics ... ok
test second::test::iter ... ok
test second::test::iter_mut ... ok
test third::test::basics ... ok
test third::test::iter ... ok
test second::test::peek ... ok
test silly1::test::walk_aboot ... ok
test result: ok. 16 passed; 0 failed; 0 ignored; 0 measured
上上下下,左左右右,BABA,哦耶,这个链表无敌了!
以上是一个非常典型的手指型数据结构,在其中维护一个手指,然后操作所需的时间与手指的距离成正比。
链接到当前文件 1