(本题共 8 小题, 每小题 4 分, 共 32 分. 在每小题给出的四个选项中, 只有一项符合题目要 求,把所选项前的字母填在题后的括号内. )
极限 lim x → ∞ [ x 2 ( x − a ) ( x + b ) ] x = ( \displaystyle \lim _{x \rightarrow \infty}\left[\frac{x^{2}}{(x-a)(x+b)}\right]^{x}=(\quad x → ∞ lim [ ( x − a ) ( x + b ) x 2 ] x = ( ) (A) 1 . (B) e. (C) e a − b \mathrm{e}^{a-b} e a − b . (D) e b − a \mathrm{e}^{b-a} e b − a .
选(C)
lim x → ∞ [ x 2 ( x − a ) ( x + b ) ] x = e lim x → ∞ x ln [ x 2 x 2 + ( b − a ) x − a b ] = e a − b \displaystyle \begin{aligned}\lim _{x \rightarrow \infty}\left[\frac{x^{2}}{(x-a)(x+b)}\right]^{x}= e^{\lim_{x \to \infty} x \ln \left[ \frac{x^2}{x^2 + (b-a)x - ab} \right] }= e^{a-b} \end{aligned} x → ∞ lim [ ( x − a ) ( x + b ) x 2 ] x = e l i m x → ∞ x l n [ x 2 + ( b − a ) x − ab x 2 ] = e a − b
= ln ( 1 + a ) → a lim x → ∞ x ln [ x 2 x 2 + ( b − a ) x − a b − 1 + 1 ] \displaystyle \begin{aligned} \xlongequal[]{\ln(1+a)→a}\lim_{x \to \infty} x \ln \left[ \frac{x^2}{x^2 + (b-a)x - ab} - 1 + 1 \right] \end{aligned} l n ( 1 + a ) → a x → ∞ lim x ln [ x 2 + ( b − a ) x − ab x 2 − 1 + 1 ] = 等价无穷小后通分 lim x → ∞ x x 2 − x 2 − ( b − a ) x + a b x 2 + ( b − a ) x − a b \displaystyle \begin{aligned} \xlongequal[]{等价无穷小后通分}\lim_{x \to \infty} x \frac{x^2 - x^2 - (b-a)x + ab}{x^2 + (b-a)x - ab} \end{aligned} 等价无穷小后通分 x → ∞ lim x x 2 + ( b − a ) x − ab x 2 − x 2 − ( b − a ) x + ab = x 2 − x 2 = 0 只取平方项 lim x → ∞ − ( b − a ) x 2 + a b x x 2 + ( b − a ) x − a b = lim x → ∞ − ( b − a ) x 2 x 2 \displaystyle \begin{aligned} \xlongequal[x^2 - x^2 =0]{只取平方项}\lim_{x \to \infty} \frac{-(b-a)x^2 + abx}{x^2 + (b-a)x - ab}=\lim_{x \to \infty} \frac{-(b-a) x^2}{x^2} \end{aligned} 只取平方项 x 2 − x 2 = 0 x → ∞ lim x 2 + ( b − a ) x − ab − ( b − a ) x 2 + ab x = x → ∞ lim x 2 − ( b − a ) x 2 = − ( b − a ) = a − b \displaystyle \begin{aligned} = -(b-a)=a - b \end{aligned} = − ( b − a ) = a − b 表达式转换:使用 e lim x → ∞ x ( 表达式 − 1 ) \displaystyle e^{\lim_{x \rightarrow \infty} x(\text{表达式} - 1)} e l i m x → ∞ x ( 表达式 − 1 ) 形式。
处理 lim x → ∞ x [ x 2 ( x − a ) ( x + b ) − 1 ] \displaystyle \lim_{x \rightarrow \infty} x\left[\frac{x^2}{(x-a)(x+b)} - 1\right] x → ∞ lim x [ ( x − a ) ( x + b ) x 2 − 1 ] 。
通分中括号内的表达式:x 2 ( x − a ) ( x + b ) − 1 = x 2 − ( x − a ) ( x + b ) ( x − a ) ( x + b ) \frac{x^2}{(x-a)(x+b)} - 1 = \frac{x^2 - (x-a)(x+b)}{(x-a)(x+b)} ( x − a ) ( x + b ) x 2 − 1 = ( x − a ) ( x + b ) x 2 − ( x − a ) ( x + b ) 。 = 因式展开 : x 2 − ( x 2 + b x − a x − a b ) ( x − a ) ( x + b ) = 消去 x 2 : a b − ( b − a ) x ( x − a ) ( x + b ) \xlongequal[]{因式展开:}\frac{x^2 - (x^2 + bx - ax - ab)}{(x-a)(x+b)}\xlongequal[]{消去x^2}:\frac{ab - (b - a)x}{(x-a)(x+b)} 因式展开 : ( x − a ) ( x + b ) x 2 − ( x 2 + b x − a x − ab ) 消去 x 2 : ( x − a ) ( x + b ) ab − ( b − a ) x 。分子乘x x x ,lim x → ∞ ( a − b ) x 2 + a b x ( x − a ) ( x + b ) = 抓高去低 a − b \displaystyle \lim_{x \rightarrow \infty} \frac{(a-b)x^2 + abx}{(x-a)(x+b)}\xlongequal[]{抓高去低}a - b x → ∞ lim ( x − a ) ( x + b ) ( a − b ) x 2 + ab x 抓高去低 a − b 。 最终极限:lim x → ∞ [ x 2 ( x − a ) ( x + b ) ] x = e a − b \displaystyle \lim_{x \rightarrow \infty}\left[\frac{x^2}{(x-a)(x+b)}\right]^{x} = e^{a-b} x → ∞ lim [ ( x − a ) ( x + b ) x 2 ] x = e a − b 。
设函数 z = z ( x , y ) z=z(x, y) z = z ( x , y ) 由方程 F ( y x , z x ) = 0 F\left(\frac{y}{x}, \frac{z}{x}\right)=0 F ( x y , x z ) = 0 确定, 其中 F F F 为可微函数, 且 F 2 ′ ≠ 0 F_{2}^{\prime} \neq 0 F 2 ′ = 0 , 则 x ∂ z ∂ x + y ∂ z ∂ y = ( ) x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=(\quad) x ∂ x ∂ z + y ∂ y ∂ z = ( ) (A) x x x . ( B) z z z . (C) − x -x − x (D) − z -z − z
求表达式 x ∂ z ∂ x + y ∂ z ∂ y x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} x ∂ x ∂ z + y ∂ y ∂ z 。 方程 F ( y x , z x ) = 0 F\left(\frac{y}{x}, \frac{z}{x}\right)=0 F ( x y , x z ) = 0 分别对 x , y x,y x , y 求偏导 对 x x x 求偏导得:− y x 2 F 1 ′ + ( ∂ z ∂ x ⋅ 1 x − z 1 x 2 ) F 2 ′ = 0 → 移项 ∂ z ∂ x = y x F 1 ′ + z x F 2 ′ F 2 ′ , -\frac{y}{x^2} F_1^{\prime} + \left(\frac{\partial z}{\partial x} \cdot \frac{1}{x} - z \frac{1}{x^2}\right) F_2^{\prime} = 0\xrightarrow[]{移项}\frac{\partial z}{\partial x}=\frac{\frac{y}{x} F_1^{\prime}+\frac{z}{x} F_2^{\prime}}{F_2^{\prime}}, − x 2 y F 1 ′ + ( ∂ x ∂ z ⋅ x 1 − z x 2 1 ) F 2 ′ = 0 移项 ∂ x ∂ z = F 2 ′ x y F 1 ′ + x z F 2 ′ , 对 y y y 求偏导得:1 x F 1 ′ + 1 x ⋅ ∂ z ∂ y F 2 ′ = 0 → 移项 ∂ z ∂ y = − F 1 ′ F 2 ′ \frac{1}{x} F_1^{\prime} + \frac{1}{x} \cdot \frac{\partial z}{\partial y} F_2^{\prime} = 0\xrightarrow[]{移项}\frac{\partial z}{\partial y}=-\frac{F_1^{\prime}}{F_2^{\prime}} x 1 F 1 ′ + x 1 ⋅ ∂ y ∂ z F 2 ′ = 0 移项 ∂ y ∂ z = − F 2 ′ F 1 ′ 组合两个偏导数得:( x ∂ z ∂ x + y ∂ z ∂ y ) = y F 1 ′ + z F 2 ′ − y F 1 ′ F 2 ′ = F 2 ′ ≠ 0 z \left(x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}\right) =\frac{y F_1^{\prime}+z F_2^{\prime}-y F_1^{\prime}}{F_2^{\prime}}\xlongequal[]{F_2^{\prime} \neq 0} z ( x ∂ x ∂ z + y ∂ y ∂ z ) = F 2 ′ y F 1 ′ + z F 2 ′ − y F 1 ′ F 2 ′ = 0 z 设 m , n m, n m , n 均是正整数, 则反常积分 ∫ 0 1 ln 2 ( 1 − x ) m x n d x \displaystyle \int_{0}^{1} \frac{\sqrt[m]{\ln ^{2}(1-x)}}{\sqrt[n]{x}} \mathrm{~d} x ∫ 0 1 n x m ln 2 ( 1 − x ) d x 的收玫性 ( ) (\quad) ( ) (A) 仅与 m m m 的取值有关. (B) 仅与 n n n 的取值有关. (C) 与 m , n m, n m , n 的取值都有关. (D) 与 m , n m, n m , n 的取值都无关.
答 应选(D).
三件事
设 m , n m, n m , n 均是正整数,则m ⩾ 1 , n ⩾ 1 m \geqslant 1, n \geqslant 1 m ⩾ 1 , n ⩾ 1
由于被积函数有两个可能的瑕点, x = 0 x=0 x = 0 和 x = 1 x=1 x = 1 , 故将原积分拆成两部分进行考虑.∫ 0 1 [ ln ( 1 − x ) ] 2 m x 1 n d x = ∫ 0 1 2 [ ln ( 1 − x ) ] 2 m x 1 n d x + ∫ 1 2 1 [ ln ( 1 − x ) ] 2 m x 1 n d x . \displaystyle \int_0^1 \frac{[\ln (1-x)]^{\frac{2}{m}}}{x^{\frac{1}{n}}} \mathrm{~d} x=\int_0^{\frac{1}{2}} \frac{[\ln (1-x)]^{\frac{2}{m}}}{x^{\frac{1}{n}}} \mathrm{~d} x+\int_{\frac{1}{2}}^1 \frac{[\ln (1-x)]^{\frac{2}{m}}}{x^{\frac{1}{n}}} \mathrm{~d} x . ∫ 0 1 x n 1 [ ln ( 1 − x ) ] m 2 d x = ∫ 0 2 1 x n 1 [ ln ( 1 − x ) ] m 2 d x + ∫ 2 1 1 x n 1 [ ln ( 1 − x ) ] m 2 d x .
lim x → 0 + ln 2 m ( 1 − x ) x 1 n = ln ( 1 − x ) ∼ ( − x ) ( − x ) 2 m x 1 n = 负号扔掉 lim x → 0 + x 2 m x 1 n = lim x → 0 + 1 x 1 n − 2 m \displaystyle \lim _{x \rightarrow 0^{+}} \frac{\ln ^{\frac{2}{m}}(1-x)}{x^{\frac{1}{n}}}\xlongequal[]{\ln (1-x) \sim(-x)}\frac{(-x)^{\frac{2}{m}}}{x^{\frac{1}{n}}}\xlongequal[]{负号扔掉}\lim _{x \rightarrow 0^{+}} \frac{x^{\frac{2}{m}}}{x^{\frac{1}{n}}}=\lim _{x \rightarrow 0^{+}} \frac{1}{x^{\frac{1}{n}-\frac{2}{m}}} x → 0 + lim x n 1 ln m 2 ( 1 − x ) l n ( 1 − x ) ∼ ( − x ) x n 1 ( − x ) m 2 负号扔掉 x → 0 + lim x n 1 x m 2 = x → 0 + lim x n 1 − m 2 1 当 m , n m, n m , n 为正数时, 1 n − 2 m < 1 n ≤ 1 \frac{1}{n}-\frac{2}{m}<\frac{1}{n} \leq 1 n 1 − m 2 < n 1 ≤ 1 m和n只要取正整数 ,上面条件肯定成立∫ 0 1 1 x p d x { 收敛, p < 1 , 发散, p ⩾ 1. \displaystyle \begin{aligned} \int_0^1 \frac{1}{x^p} d x \begin{cases}\text { 收敛, } & p<1, \\\text { 发散, } & p \geqslant 1 .\end{cases}\end{aligned} ∫ 0 1 x p 1 d x { 收敛, 发散, p < 1 , p ⩾ 1. x → 1 x \rightarrow 1 x → 1
f ( x ) = [ ln ( 1 − x ) ] 2 m ( x 1 n ) ∼ [ ln ( 1 − x ) ] 2 m \displaystyle \begin{aligned}f(x)=\frac{[\ln (1-x)]^{\frac{2}{m}}}{\left(x^{\frac{1}{n}}\right)} \sim[\ln (1-x)]^{\frac{2}{m}}\end{aligned} f ( x ) = ( x n 1 ) [ ln ( 1 − x ) ] m 2 ∼ [ ln ( 1 − x ) ] m 2 = ( − ln 1 1 − x ) 2 m =\left(-\ln \frac{1}{1-x}\right)^{\frac{2}{m}} = ( − ln 1 − x 1 ) m 2 = ( ln 1 1 − x ) 2 m =\left(\ln \frac{1}{1-x}\right)^{\frac{2}{m}} = ( ln 1 − x 1 ) m 2 ,伪无穷不用算,必定收敛比较判敛法
设 lim x → + ∞ f ( x ) g ( x ) = l \displaystyle \begin{aligned} \lim_{x\rightarrow+\infty}\frac{f(x)}{g(x)}=l \end{aligned} x → + ∞ lim g ( x ) f ( x ) = l ,默认x跑向无穷时,f ( x ) f(x) f ( x ) 与g ( x ) g(x) g ( x ) 跑向无穷小 (1) l \displaystyle \begin{aligned} l \end{aligned} l 为非零常数, 则 ∫ 1 + ∞ f ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} f(x) dx \end{aligned} ∫ 1 + ∞ f ( x ) d x 与 ∫ 1 + ∞ g ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} g(x) dx \end{aligned} ∫ 1 + ∞ g ( x ) d x 同敛散;(同阶同敛散) (2) l = 0 \displaystyle \begin{aligned} l=0 \end{aligned} l = 0 , ∫ 1 + ∞ g ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} g(x) dx \end{aligned} ∫ 1 + ∞ g ( x ) d x 收敛则 ∫ 1 + ∞ f ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} f(x) dx \end{aligned} ∫ 1 + ∞ f ( x ) d x 收敛; (3) l = ∞ \displaystyle \begin{aligned} l=\infty \end{aligned} l = ∞ , ∫ 1 + ∞ g ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} g(x) dx \end{aligned} ∫ 1 + ∞ g ( x ) d x 发散则 ∫ 1 + ∞ f ( x ) d x \displaystyle \begin{aligned} \int_1^{+\infty} f(x) dx \end{aligned} ∫ 1 + ∞ f ( x ) d x 发散. 设 lim x → 0 f ( x ) g ( x ) = l \displaystyle \begin{aligned} \lim_{x\rightarrow 0}\frac{f(x)}{g(x)}=l \end{aligned} x → 0 lim g ( x ) f ( x ) = l , 0 \displaystyle \begin{aligned} 0 \end{aligned} 0 为瑕点,默认x跑向0时,f ( x ) f(x) f ( x ) 与g ( x ) g(x) g ( x ) 跑向无穷小 (1) l \displaystyle \begin{aligned} l \end{aligned} l 为非零常数, 则 ∫ 0 1 f ( x ) d x \displaystyle \begin{aligned} \int_0^1 f(x) dx \end{aligned} ∫ 0 1 f ( x ) d x 与 ∫ 0 1 g ( x ) d x \displaystyle \begin{aligned} \int_0^1 g(x) dx \end{aligned} ∫ 0 1 g ( x ) d x 同敛散; (2) l = 0 \displaystyle \begin{aligned} l=0 \end{aligned} l = 0 , ∫ 0 1 g ( x ) d x \displaystyle \begin{aligned} \int_0^1 g(x) dx \end{aligned} ∫ 0 1 g ( x ) d x 收敛则 ∫ 0 1 f ( x ) d x \displaystyle \begin{aligned} \int_0^1 f(x) dx \end{aligned} ∫ 0 1 f ( x ) d x 收敛; (3) l = ∞ \displaystyle \begin{aligned} l=\infty \end{aligned} l = ∞ , ∫ 0 1 g ( x ) d x \displaystyle \begin{aligned} \int_0^1 g(x) dx \end{aligned} ∫ 0 1 g ( x ) d x 发散则 ∫ 0 1 f ( x ) d x \displaystyle \begin{aligned} \int_0^1 f(x) dx \end{aligned} ∫ 0 1 f ( x ) d x 发散. 二、 P积分
∫ 1 + ∞ 1 x p d x { 收敛, p > 1 , 发散, p ⩽ 1. \displaystyle \begin{aligned}& \int_1^{+\infty} \frac{1}{x^p} d x \begin{cases}\text { 收敛, } & p>1, \\\text { 发散, } & p \leqslant 1 .\end{cases} \end{aligned} ∫ 1 + ∞ x p 1 d x { 收敛, 发散, p > 1 , p ⩽ 1. ∫ 0 1 1 x p d x { 收敛, p < 1 , 发散, p ⩾ 1. \displaystyle \begin{aligned} \int_0^1 \frac{1}{x^p} d x \begin{cases}\text { 收敛, } & p<1, \\\text { 发散, } & p \geqslant 1 .\end{cases}\end{aligned} ∫ 0 1 x p 1 d x { 收敛, 发散, p < 1 , p ⩾ 1. 三、 ∫ 0 1 ln n x d x \displaystyle \begin{aligned}\int_0^1 \ln ^n x d x\end{aligned} ∫ 0 1 ln n x d x 的敛散性 ( n > 0 ) (n>0) ( n > 0 ) :x → 0 + , ∣ ln n x ∣ ≪ 1 x m x \rightarrow 0^{+},\left|\ln ^n x\right| \ll \frac{1}{x^m} x → 0 + , ∣ ln n x ∣ ≪ x m 1
\begin{document}
\begin{tikzpicture}
% 绘制坐标轴
\draw[->] (-0.2,0) -- (1.5,0) node[right] {$x$};
\draw[->] (0,-1) -- (0,1) node[above] {$y$};
% 定义曲线 y = ln(x),限制范围
\draw[domain=0.2:1.5,smooth,variable=\x]
plot ({\x}, {ln(\x)}) node[right] {$y = \ln(x)$};
% 填充阴影区域
\begin{scope} \clip (0,-1.5) rectangle (1,0); \fill[black!20,opacity=0.7] plot[domain=0.01:1,smooth]({\x}, {ln(\x)}) -- (1,0) -- (0,0) -- cycle; \end{scope}
% 标记点
\node[below] at (1,0) {1};
\node[below left] at (0,0) {0};
\node[below left] at (0.05, -1) {$(0, \ln(x))$};
\end{tikzpicture}
\end{document}
lim x → 0 + ln x 1 / x = 洛必达 lim x → 0 + 1 / x − 1 / x 2 = 整理 lim x → 0 + ( − x ) = 0 \displaystyle \begin{aligned}\lim _{x \rightarrow 0^{+}} \frac{\ln x}{1 / x}\xlongequal[]{洛必达}\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-1 / x^2}\xlongequal[]{整理}\lim _{x \rightarrow 0^{+}}(-x)=0\end{aligned} x → 0 + lim 1/ x ln x 洛必达 x → 0 + lim − 1/ x 2 1/ x 整理 x → 0 + lim ( − x ) = 0 lim x → 0 + ln 2 x 1 / x = 洛必达 lim x → 0 + 2 ln x ⋅ 1 x − 1 / x 2 = 整理 lim x → 0 + 2 ln x − 1 / x \displaystyle \begin{aligned}\lim _{x \rightarrow 0^{+}} \frac{\ln ^2 x}{1 / x}\xlongequal[]{洛必达}\lim _{x \rightarrow 0^{+}} \frac{2 \ln x \cdot \frac{1}{x}}{-1 / x^2}\xlongequal[]{整理}\lim _{x \rightarrow 0^{+}} \frac{2 \ln x}{-1 / x}\end{aligned} x → 0 + lim 1/ x ln 2 x 洛必达 x → 0 + lim − 1/ x 2 2 ln x ⋅ x 1 整理 x → 0 + lim − 1/ x 2 ln x lim x → 0 + ln x 1 / x 2 = 洛必达 lim x → 0 + 1 / x − 2 x − 3 = lim x → 0 + x 2 − 2 = 0 \displaystyle \lim _{x \rightarrow 0^{+}} \frac{\operatorname{ln} x}{1 / x^2}\xlongequal[]{洛必达}\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}} \frac{x^2}{-2}=0 x → 0 + lim 1/ x 2 ln x 洛必达 x → 0 + lim − 2 x − 3 1/ x = x → 0 + lim − 2 x 2 = 0 lim n → ∞ ∑ i = 1 n ∑ j = 1 n n ( n + i ) ( n 2 + j 2 ) = ( \displaystyle \lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{n}{(n+i)\left(n^{2}+j^{2}\right)}=(\quad n → ∞ lim i = 1 ∑ n j = 1 ∑ n ( n + i ) ( n 2 + j 2 ) n = ( ) (A) ∫ 0 1 d x ∫ 0 x 1 ( 1 + x ) ( 1 + y 2 ) d y \displaystyle \int_{0}^{1} \mathrm{~d} x \int_{0}^{x} \frac{1}{(1+x)\left(1+y^{2}\right)} \mathrm{d} y ∫ 0 1 d x ∫ 0 x ( 1 + x ) ( 1 + y 2 ) 1 d y . (B) ∫ 0 1 d x ∫ 0 x 1 ( 1 + x ) ( 1 + y ) d y \displaystyle \int_{0}^{1} \mathrm{~d} x \int_{0}^{x} \frac{1}{(1+x)(1+y)} \mathrm{d} y ∫ 0 1 d x ∫ 0 x ( 1 + x ) ( 1 + y ) 1 d y . (C) ∫ 0 1 d x ∫ 0 1 1 ( 1 + x ) ( 1 + y ) d y \displaystyle \int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \frac{1}{(1+x)(1+y)} \mathrm{d} y ∫ 0 1 d x ∫ 0 1 ( 1 + x ) ( 1 + y ) 1 d y . (D) ∫ 0 1 d x ∫ 0 1 1 ( 1 + x ) ( 1 + y 2 ) d y \displaystyle \int_{0}^{1} \mathrm{~d} x \int_{0}^{1} \frac{1}{(1+x)\left(1+y^{2}\right)} \mathrm{d} y ∫ 0 1 d x ∫ 0 1 ( 1 + x ) ( 1 + y 2 ) 1 d y .答 应选(D).
原式 = lim n → ∞ ∑ i = 1 n ∑ j = 1 n n 3 ( n + i ) ( n 2 + j 2 ) 1 n 2 \displaystyle \begin{aligned} 原式 =\lim _{n \rightarrow \infty} \sum_{i=1}^n \sum_{j=1}^n \frac{n^3}{(n+i)\left(n^2+j^2\right)} \frac{1}{n^2} \end{aligned} 原式 = n → ∞ lim i = 1 ∑ n j = 1 ∑ n ( n + i ) ( n 2 + j 2 ) n 3 n 2 1 = 提取 1 n 2 lim n → ∞ ∑ i = 1 n ∑ j = 1 n 1 ( 1 + i n ) ( 1 + ( j n ) 2 ) ⋅ 1 n 2 \displaystyle \begin{aligned} \xlongequal[]{提取\frac{1}{n^2} }\lim _{n \rightarrow \infty} \sum_{i=1}^n \sum_{j=1}^n \frac{1}{\left(1+\frac{i}{n}\right)\left(1+\left(\frac{j}{n}\right)^2\right)} \cdot \frac{1}{n^2} \end{aligned} 提取 n 2 1 n → ∞ lim i = 1 ∑ n j = 1 ∑ n ( 1 + n i ) ( 1 + ( n j ) 2 ) 1 ⋅ n 2 1 = i n = x , j n = y ∫ 0 1 d x ∫ 0 1 1 ( 1 + x ) ( 1 + y 2 ) d y \displaystyle \begin{aligned}\xlongequal[]{\frac{i}{n}=x, \frac{j}{n}=y}\int_0^1 d x \int_0^1 \frac{1}{(1+x)\left(1+y^2\right)} d y\end{aligned} n i = x , n j = y ∫ 0 1 d x ∫ 0 1 ( 1 + x ) ( 1 + y 2 ) 1 d y 设 A \boldsymbol{A} A 为 m × n m \times n m × n 矩阵, B \boldsymbol{B} B 为 n × m n \times m n × m 矩阵, E \boldsymbol{E} E 为 m m m 阶单位矩阵,若 A B = E \boldsymbol{A} \boldsymbol{B}=\boldsymbol{E} A B = E , 则 ( ) (\quad) ( ) (A) 秩 r ( A ) = m r(\boldsymbol{A})=m r ( A ) = m , 秩 r ( B ) = m r(\boldsymbol{B})=m r ( B ) = m . (B) 秩 r ( A ) = m r(\boldsymbol{A})=m r ( A ) = m , 秩 r ( B ) = n r(\boldsymbol{B})=n r ( B ) = n . (C) 秩 r ( A ) = n r(\boldsymbol{A})=n r ( A ) = n , 秩 r ( B ) = m r(\boldsymbol{B})=m r ( B ) = m . (D) 秩 r ( A ) = n r(\boldsymbol{A})=n r ( A ) = n , 秩 r ( B ) = n r(\boldsymbol{B})=n r ( B ) = n .
答 应选 (A). 解 由已知可得 r ( A ) ⩽ min { m , n } ⩽ m , r ( B ) ⩽ min { m , n } ⩽ m , m = r ( E ) = r ( A B ) ⩽ min { r ( A ) , r ( B ) } r(\boldsymbol{A}) \leqslant \min \{m, n\} \leqslant m, r(\boldsymbol{B}) \leqslant \min \{m, n\} \leqslant m, m=r(\boldsymbol{E})=r(\boldsymbol{A B}) \leqslant \min \{r(\boldsymbol{A}), r(\boldsymbol{B})\} r ( A ) ⩽ min { m , n } ⩽ m , r ( B ) ⩽ min { m , n } ⩽ m , m = r ( E ) = r ( AB ) ⩽ min { r ( A ) , r ( B )} , 即有 r ( A ) ⩾ m r(\boldsymbol{A}) \geqslant m r ( A ) ⩾ m 及 r ( B ) ⩾ m r(\boldsymbol{B}) \geqslant m r ( B ) ⩾ m . 所以 r ( A ) = r ( B ) = m r(\boldsymbol{A})=r(\boldsymbol{B})=m r ( A ) = r ( B ) = m , 应选 ( A ) (\mathrm{A}) ( A ) .
设 A \boldsymbol{A} A 为 4 阶实对称矩阵, 且 A 2 + A = O \boldsymbol{A}^{2}+\boldsymbol{A}=\boldsymbol{O} A 2 + A = O . 若 A \boldsymbol{A} A 的秩为 3 , 则 A \boldsymbol{A} A 相似于 () (A) ( 1 1 1 0 ) \displaystyle \left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 0\end{array}\right) 1 1 1 0 . (B) ( 1 1 − 1 0 ) \displaystyle \left(\begin{array}{llll}1 & & & \\ & 1 & & \\ & & -1 & \\ & & & 0\end{array}\right) 1 1 − 1 0 . (C) ( 1 − 1 − 1 0 ) \displaystyle \left(\begin{array}{llll}1 & & & \\ & -1 & & \\ & & -1 & \\ & & & 0\end{array}\right) 1 − 1 − 1 0 . (D) ( − 1 − 1 − 1 0 ) \displaystyle \left(\begin{array}{llll}-1 & & & \\ & -1 & & \\ & & -1 & \\ & & & 0\end{array}\right) − 1 − 1 − 1 0 .
答 应选(D). 解 因 A \boldsymbol{A} A 是秩为 3 的实对称矩阵, 所以 A \boldsymbol{A} A 必相似于秩为 3 的对角矩阵. 设 λ \lambda λ 为 A \boldsymbol{A} A 的特征值, 由 A 2 + A = O \boldsymbol{A}^2+\boldsymbol{A}=\boldsymbol{O} A 2 + A = O 可得 λ 2 + λ = 0 \lambda^2+\lambda=0 λ 2 + λ = 0 , 即 λ = 0 \lambda=0 λ = 0 或 -1 . 由此可知只有选项 (D) 是正确的. 注 题目中“实对称”这个条件是可以删掉的, 不影响答案, 但是这样题目难度就加大了, 因为此时判 断 A ∼ Λ \boldsymbol{A} \sim \boldsymbol{\Lambda} A ∼ Λ 就不那么容易了. 读者可以利用“ A \boldsymbol{A} A 有 n n n 个线性无关的特征向量”来完成 A ∼ Λ \boldsymbol{A} \sim \boldsymbol{\Lambda} A ∼ Λ 这一步.
设随机变量 X X X 的分布函数 F ( x ) = { 0 , x < 0 , 1 2 , 0 ⩽ x < 1 , 1 − e − x , x ⩾ 1 , \displaystyle F(x)=\left\{\begin{array}{ll}0, & x<0, \\ \frac{1}{2}, & 0 \leqslant x<1, \\ 1-\mathrm{e}^{-x}, & x \geqslant 1,\end{array}\right. F ( x ) = ⎩ ⎨ ⎧ 0 , 2 1 , 1 − e − x , x < 0 , 0 ⩽ x < 1 , x ⩾ 1 , 则 P { X = 1 } = ( ) P\{X=1\}=(\quad) P { X = 1 } = ( ) ( A) 0 . ( B) 1 2 \frac{1}{2} 2 1 . (C) 1 2 − e − 1 \frac{1}{2}-\mathrm{e}^{-1} 2 1 − e − 1 . (D) 1 − e − 1 1-\mathrm{e}^{-1} 1 − e − 1 .
答 应选(C).
设 f 1 ( x ) f_{1}(x) f 1 ( x ) 为标准正态分布的概率密度, f 2 ( x ) f_{2}(x) f 2 ( x ) 为 [ − 1 , 3 ] [-1,3] [ − 1 , 3 ] 上均匀分布的概率密度, 若
f ( x ) = { a f 1 ( x ) , x ⩽ 0 , b f 2 ( x ) , x > 0 ( a > 0 , b > 0 ) \displaystyle f(x)=\left\{\begin{array}{ll}a f_{1}(x), & x \leqslant 0, \\b f_{2}(x), & x>0\end{array}(a>0, b>0)\right. f ( x ) = { a f 1 ( x ) , b f 2 ( x ) , x ⩽ 0 , x > 0 ( a > 0 , b > 0 ) 为概率密度, 则 a , b a, b a , b 应满足 ( ) (A) 2 a + 3 b = 4 2 a+3 b=4 2 a + 3 b = 4 . (B) 3 a + 2 b = 4 3 a+2 b=4 3 a + 2 b = 4 . (C) a + b = 1 a+b=1 a + b = 1 . (D) a + b = 2 a+b=2 a + b = 2 .题中出现参数,由规范性求参数1 = ∫ − ∞ + ∞ f ( x ) d x \displaystyle 1 = \int_{-\infty}^{+\infty} f(x) \, \mathrm{d} x 1 = ∫ − ∞ + ∞ f ( x ) d x = 按照 f ( x ) 区间拆开 ∫ − ∞ 0 a f 1 ( x ) d x + ∫ 0 + ∞ b f 2 ( x ) d x \displaystyle \xlongequal[]{\text{按照} f(x) \text{区间拆开}} \int_{-\infty}^0 a f_1(x) \, \mathrm{d} x + \int_0^{+\infty} b f_2(x) \, \mathrm{d} x 按照 f ( x ) 区间拆开 ∫ − ∞ 0 a f 1 ( x ) d x + ∫ 0 + ∞ b f 2 ( x ) d x ,之后,在何处算概率,在何处求积分 → ∫ − ∞ 0 f 1 ( x ) d x = 1 2 计算第一部分积分 ∫ − ∞ 0 a f 1 ( x ) d x = 1 2 a \displaystyle \xrightarrow[\int_{-\infty}^0 f_1(x) \, \mathrm{d} x = \frac{1}{2}]{\text{计算第一部分积分}} \int_{-\infty}^0 a f_1(x) \, \mathrm{d} x = \frac{1}{2} a 计算第一部分积分 ∫ − ∞ 0 f 1 ( x ) d x = 2 1 ∫ − ∞ 0 a f 1 ( x ) d x = 2 1 a f 1 ( x ) f_1(x) \text{} f 1 ( x ) 是标准正态分布,服从N ( 0 , 1 ) N(0,1) N ( 0 , 1 ) → 计算第二部分积分 ∫ 0 + ∞ b f 2 ( x ) d x = 在 ( 0 , 3 ) 取值 ∫ 0 3 b f 2 ( x ) d x \displaystyle \xrightarrow[]{\text{计算第二部分积分}} \int_0^{+\infty} b f_2(x) \, \mathrm{d} x \xlongequal[]{在(0,3)取值}\int_0^3 b f_2(x) \, \mathrm{d} x 计算第二部分积分 ∫ 0 + ∞ b f 2 ( x ) d x 在 ( 0 , 3 ) 取值 ∫ 0 3 b f 2 ( x ) d x f 2 ( x ) 是 [ − 1 , 3 ] f_2(x) \text{是} [-1,3] \text{} f 2 ( x ) 是 [ − 1 , 3 ] 上的均匀分布 ∫ 0 3 f 2 ( x ) d x = ∫ 0 3 b 4 ⋅ 1 d x = 3 4 → 计算积分 b ∫ 0 3 f 2 ( x ) d x = 3 4 b \displaystyle \int_0^3 f_2(x) \, \mathrm{d} x = \int_0^3 \frac{b}{4} \cdot 1 d x=\frac{3}{4}\xrightarrow[]{\text{计算积分}} b \int_0^3 f_2(x) \, \mathrm{d} x = \frac{3}{4} b ∫ 0 3 f 2 ( x ) d x = ∫ 0 3 4 b ⋅ 1 d x = 4 3 计算积分 b ∫ 0 3 f 2 ( x ) d x = 4 3 b = 将两部分结合 1 2 a + 3 4 b = 1 → 同乘4 2 a + 3 b = 4 \xlongequal[]{\text{将两部分结合}} \frac{1}{2} a + \frac{3}{4} b=1\xrightarrow[]{\text{同乘4}} 2a + 3b = 4 将两部分结合 2 1 a + 4 3 b = 1 同乘 4 2 a + 3 b = 4 答 应选 (A).
(本题共 6 小题,每小题 4 分,共 24 分, 把答案填在题中横线上. )
设 { x = e − t , y = ∫ 0 t ln ( 1 + u 2 ) d u , 则 d 2 y d x 2 ∣ t = 0 = \displaystyle \left\{\begin{array}{l}x=\mathrm{e}^{-t}, \\ y=\int_{0}^{t} \ln \left(1+u^{2}\right) \mathrm{d} u, \text { 则 }\left.\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\right|_{t=0}=\end{array}\right. { x = e − t , y = ∫ 0 t ln ( 1 + u 2 ) d u , 则 d x 2 d 2 y t = 0 =
答 应填 0 .
计算d y d x = d y d t ⋅ d t d x \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\mathrm{d} y}{\mathrm{d} t} \cdot \frac{\mathrm{d} t}{\mathrm{d} x} d x d y = d t d y ⋅ d x d t 计算 d y d t \frac{\mathrm{d} y}{\mathrm{d} t} d t d y 由 y = ∫ 0 t ln ( 1 + u 2 ) d u \displaystyle y = \int_{0}^{t} \ln(1 + u^2) \mathrm{d} u y = ∫ 0 t ln ( 1 + u 2 ) d u 得 d y d t = ln ( 1 + t 2 ) \frac{\mathrm{d} y}{\mathrm{d} t} = \ln(1 + t^2) d t d y = ln ( 1 + t 2 ) 计算 d t d x \frac{\mathrm{d} t}{\mathrm{d} x} d x d t 由 x = e − t x = \mathrm{e}^{-t} x = e − t 得 d t d x = − e t \frac{\mathrm{d} t}{\mathrm{d} x} = -\mathrm{e}^t d x d t = − e t 得出 d y d x = ln ( 1 + t 2 ) − e − t \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{\ln(1 + t^2)}{-\mathrm{e}^{-t}} d x d y = − e − t l n ( 1 + t 2 ) - 计算 d 2 y d x 2 \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} d x 2 d 2 y 使用链式法则 d 2 y d x 2 = d d t ( d y d x ) ⋅ d t d x \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} y}{\mathrm{d} x}\right) \cdot \frac{\mathrm{d} t}{\mathrm{d} x} d x 2 d 2 y = d t d ( d x d y ) ⋅ d x d t 计算 d d t ( d y d x ) \frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} y}{\mathrm{d} x}\right) d t d ( d x d y ) 由前面得出的 d y d x \frac{\mathrm{d} y}{\mathrm{d} x} d x d y 式子,得 d d t ( d y d x ) = e t [ 2 t 1 + t 2 + ln ( 1 + t 2 ) ] \frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{d} y}{\mathrm{d} x}\right) = \mathrm{e}^{t}\left[\frac{2t}{1 + t^2} + \ln(1 + t^2)\right] d t d ( d x d y ) = e t [ 1 + t 2 2 t + ln ( 1 + t 2 ) ] 使用 d t d x = − e t \frac{\mathrm{d} t}{\mathrm{d} x} = -\mathrm{e}^t d x d t = − e t 得出 d 2 y d x 2 = e 2 t [ 2 t 1 + t 2 + ln ( 1 + t 2 ) ] \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \mathrm{e}^{2t}\left[\frac{2t}{1 + t^2} + \ln(1 + t^2)\right] d x 2 d 2 y = e 2 t [ 1 + t 2 2 t + ln ( 1 + t 2 ) ] - 计算 d 2 y d x 2 ∣ t = 0 \left.\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}\right|_{t=0} d x 2 d 2 y t = 0 将 t = 0 t = 0 t = 0 代入 d 2 y d x 2 \frac{\mathrm{d}^2 y}{\mathrm{d} x^2} d x 2 d 2 y 得出 d 2 y d x 2 ∣ t = 0 = 0 \left.\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}\right|_{t=0} = 0 d x 2 d 2 y t = 0 = 0 ∫ 0 π 2 x cos x d x = \displaystyle \int_{0}^{\pi^{2}} \sqrt{x} \cos \sqrt{x} \mathrm{~d} x= ∫ 0 π 2 x cos x d x = 问题: 求定积分 ∫ 0 π 2 x cos x d x \displaystyle \int_{0}^{\pi^{2}} \sqrt{x} \cos \sqrt{x} \, \mathrm{d} x ∫ 0 π 2 x cos x d x 第一步:看到一次根号,直接换元根号 换元有三换: 设置换元: 令 t = x t = \sqrt{x} t = x ,则 x = t 2 x = t^2 x = t 2 计算微分: d x = 2 t d t \mathrm{d}x = 2t \, \mathrm{d}t d x = 2 t d t 调整积分限: 当 x = 0 x = 0 x = 0 ,t = 0 t = 0 t = 0 ;当 x = π 2 x = \pi^2 x = π 2 ,t = π t = \pi t = π 换元后的积分: ∫ 0 π t cos t ⋅ 2 t d t = 2 ∫ 0 π t 2 cos t d t \displaystyle \int_{0}^{\pi} t \cos t \cdot 2t \, \mathrm{d} t = 2 \int_{0}^{\pi} t^2 \cos t \, \mathrm{d} t ∫ 0 π t cos t ⋅ 2 t d t = 2 ∫ 0 π t 2 cos t d t 第二步:分部积分法 准备∫ u d v = u v − ∫ v d u \displaystyle \int u \, \mathrm{d}v = uv - \int v \, \mathrm{d}u ∫ u d v = uv − ∫ v d u 选择 u u u 和 d v \mathrm{d}v d v : 令 u = t 2 u = t^2 u = t 2 ,d v = d ( sin t ) \mathrm{d}v = \, \mathrm{d}(\sin t) d v = d ( sin t ) 计算 d u \mathrm{d}u d u 和 v v v : d u = 2 t d t \mathrm{d}u = 2t \, \mathrm{d}t d u = 2 t d t ,v = sin t v = \sin t v = sin t 第一次分部积分: 2 ∫ 0 π t 2 cos t d t = 2 t 2 sin t ∣ 0 π − 4 ∫ 0 π t sin t d t \displaystyle 2 \int_{0}^{\pi} t^2 \cos t \, \mathrm{d} t = \left.2 t^2 \sin t\right|_0^{\pi} - 4 \int_{0}^{\pi} t \sin t \, \mathrm{d} t 2 ∫ 0 π t 2 cos t d t = 2 t 2 sin t 0 π − 4 ∫ 0 π t sin t d t 计算第一部分:2 t 2 sin t ∣ 0 π = 0 − 0 = 0 2 t^2 \sin t|_0^{\pi} =0-0=0 2 t 2 sin t ∣ 0 π = 0 − 0 = 0 接下来两种方法(分部积分,常用结论) 方法1:对第二部分再次分部积分: − ∫ 0 π t d ( cos t ) = − [ t cos t ∣ 0 π − ∫ 0 π cos t d t ] \displaystyle -\int_{0}^{\pi} t \, \mathrm{d}(\cos t) = -[\left.t \cos t\right|_0^{\pi} - \int_{0}^{\pi} \cos t \, \mathrm{d} t] − ∫ 0 π t d ( cos t ) = − [ t cos t ∣ 0 π − ∫ 0 π cos t d t ] 计算: − [ − π − sin t ∣ 0 π ] = π -[-\pi - \left.\sin t\right|_0^{\pi}] = \pi − [ − π − sin t ∣ 0 π ] = π 将第二部分带回得:− 4 π -4 \pi − 4 π 方法2:对第二部分用结论:∫ 0 π x f ( sin x ) d x = 提出 x 变成 π 2 π 2 ∫ 0 π f ( sin x ) d x = π 2 ⋅ 2 ∫ 0 π 2 f ( sin x ) d x \displaystyle \int_0^\pi x f(\sin x){d x}\xlongequal[]{提出x变成\frac{\pi}{2}}\frac{\pi}{2} \int_0^{\pi} f(\sin x) d x=\frac{\pi}{2} \cdot 2 \int_0^{\frac{\pi}{2}} f(\sin x) d x ∫ 0 π x f ( sin x ) d x 提出 x 变成 2 π 2 π ∫ 0 π f ( sin x ) d x = 2 π ⋅ 2 ∫ 0 2 π f ( sin x ) d x − 4 ∫ 0 π t sin t d t = − 4 ⋅ π 2 ∫ 0 π sin t d t = ∫ 0 π 2 sin t d t = 1 − 2 π ⋅ 2 = − 4 π \displaystyle -4 \int_0^\pi t \sin t d t=-4 \cdot \frac{\pi}{2} \int_0^\pi \sin t d t\xlongequal[]{\int_0^{\frac{\pi}{2}} \sin t d t=1}-2 \pi \cdot 2=-4 \pi − 4 ∫ 0 π t sin t d t = − 4 ⋅ 2 π ∫ 0 π sin t d t ∫ 0 2 π s i n t d t = 1 − 2 π ⋅ 2 = − 4 π 已知曲线 L L L 的方程为 y = 1 − ∣ x ∣ ( x ∈ [ − 1 , 1 ] ) y=1-|x|(x \in[-1,1]) y = 1 − ∣ x ∣ ( x ∈ [ − 1 , 1 ]) , 起点是 ( − 1 , 0 ) (-1,0) ( − 1 , 0 ) , 终点为 ( 1 , 0 ) (1,0) ( 1 , 0 ) , 则曲线积分 ∫ L x y d x + x 2 d y = \displaystyle \int_{L} x y \mathrm{~d} x+x^{2} \mathrm{~d} y= ∫ L x y d x + x 2 d y =
答 应填 0 .
\begin{document}
\begin{tikzpicture}
% 绘制坐标轴
\draw[->] (-1.5,0) -- (1.5,0) node[right] {$x$};
\draw[->] (0,-0.5) -- (0,1.5) node[above] {$y$};
% 三角形顶点
\coordinate (A) at (-1,0);
\coordinate (B) at (1,0);
\coordinate (C) at (0,1);
% 绘制三角形边
\draw[thick,red!50] (A) -- (C) node[midway,left] {$L_1$};
\draw[thick,red!50] (C) -- (B) node[midway,right] {$L_2$};
\draw[thick,blue!50] (B) -- (A) node[midway,below] {$L_3$};
% 标注顶点
\node[below left] at (A) {$(-1,0)$};
\node[below right] at (B) {$(1,0)$};
\node[above] at (C) {$(0,1)$};
\node[below left] at (0,0) {$0$};
% 添加方向箭头
\draw[->,red!50,line width=1pt] (-0.5,0.5) -- (-0.45,0.55);
\draw[->,red!50,line width=1pt] (0.5,0.5) -- (0.55,0.45);
\draw[->,blue!50,line width=1pt] (0,-0.05) -- (-0.05,-0.05);
\end{tikzpicture}
\end{document}
∫ L x y d x + x 2 d y = \displaystyle \begin{aligned} & \int_L x y \mathrm{~d} x+x^2 \mathrm{~d} y= \end{aligned} ∫ L x y d x + x 2 d y = = 照抄 ∫ L + L ′ x y d x + x 2 d y − ∫ L ′ x y d x + x 2 d y \displaystyle \begin{aligned}\xlongequal[]{照抄}\int_{L+L^{\prime}} x y \mathrm{~d} x+x^2 \mathrm{~d} y-\int_{L^{\prime}} x y \mathrm{~d} x+x^2 \mathrm{~d} y\end{aligned} 照抄 ∫ L + L ′ x y d x + x 2 d y − ∫ L ′ x y d x + x 2 d y ∮ L + L ′ x y d x + x 2 d y ⏟ P = x y Q = x 2 = 逆时针,加负号 ∂ Q ∂ z − ∂ P ∂ y = − ∬ D ( 2 x − x ) d x d y \displaystyle \begin{aligned}\underbrace{\oint_{L+L'} x y d x+x^2 d y}_{P=x y \quad Q=x^2}\xlongequal[逆时针,加负号]{\frac{\partial Q}{\partial z}-\frac{\partial P}{\partial y}=}-\iint_D(2 x-x) d x d y\end{aligned} P = x y Q = x 2 ∮ L + L ′ x y d x + x 2 d y ∂ z ∂ Q − ∂ y ∂ P = 逆时针,加负号 − ∬ D ( 2 x − x ) d x d y = − ∬ p x d x d y =-\iint_p x d x d y = − ∬ p x d x d y = x 是奇函数 区域关于 y 对称 0 \displaystyle \begin{aligned} \xlongequal[x是奇函数]{区域关于y对称}0 \end{aligned} 区域关于 y 对称 x 是奇函数 0 ∫ L ′ x y d x + x 2 d y = x y = 0 0 + 0 = 0 \displaystyle \begin{aligned}\int_{L^{\prime}} x y \mathrm{~d} x+x^2 \mathrm{~d} y\xlongequal[]{xy=0}0+0=0\end{aligned} ∫ L ′ x y d x + x 2 d y x y = 0 0 + 0 = 0 ∫ L = 0 − 0 = 0 \displaystyle \begin{aligned}\int_L=0-0=0\end{aligned} ∫ L = 0 − 0 = 0 设 Ω = { ( x , y , z ) ∣ x 2 + y 2 ⩽ z ⩽ 1 } \Omega=\left\{(x, y, z) \mid x^{2}+y^{2} \leqslant z \leqslant 1\right\} Ω = { ( x , y , z ) ∣ x 2 + y 2 ⩽ z ⩽ 1 } , 则 Ω \Omega Ω 的形心的坚坐标 z ˉ = \bar{z}= z ˉ =
\usepackage{tikz-3dplot}
\begin{document}
\begin{tikzpicture}
% 设置 3D 视角(俯仰角 80°,水平旋转角 120°)
\tdplotsetmaincoords{80}{120}
\begin{scope}[tdplot_main_coords]
% 绘制坐标轴
\draw[->] (0,0,0) -- (1.5,0,0) node[below right] {$x$};
\draw[->] (0,0,0) -- (0,1.5,0) node[below left] {$y$};
\draw[->] (0,0,0) -- (0,0,1.5) node[above] {$z$};
% 主平面上的虚线轮廓
\draw[dashed] plot[domain=0:1,samples=50] ({\x},0,{\x*\x});
\draw[dashed] plot[domain=0:1,samples=50] ({-\x},0,{\x*\x});
\draw[dashed] plot[domain=0:1,samples=50] (0,{\x},{\x*\x});
\draw[dashed] plot[domain=0:1,samples=50] (0,{-\x},{\x*\x});
% 真实边缘轮廓
\foreach \angle in {120, 300} {
\draw[smooth, thick] plot[domain=0:1,samples=50]
({\x*cos(\angle)},{\x*sin(\angle)},{\x*\x});
}
% 顶部圆形
\draw[smooth] (1,0,1) arc[start angle=0,end angle=360,x radius=1,y radius=1];
% 标注点
\node[below left] at (0,0,0) {$O$};
\node[right] at (0,0,1) {$z=1$};
% 在右侧标注曲面方程
\node[anchor=west] at (0,1,0.5) {\large $z = x^2 + y^2$};
\end{scope}
\end{tikzpicture}
\end{document}
空间区域的形心:空间有界闭区域 Ω \Omega Ω 的形心坐标为 x ˉ = 1 V ∭ Ω x d v , y ˉ = 1 V ∭ Ω y d v , z ˉ = 1 V ∭ Ω z d v , \displaystyle \begin{aligned} \bar{x} & =\frac{1}{V} \iiint_{\Omega} x \mathrm{~d} v, \\\bar{y} & =\frac{1}{V} \iiint_{\Omega} y \mathrm{~d} v, \\\bar{z} & =\frac{1}{V} \iiint_{\Omega} z \mathrm{~d} v, \end{aligned} x ˉ y ˉ z ˉ = V 1 ∭ Ω x d v , = V 1 ∭ Ω y d v , = V 1 ∭ Ω z d v , 其中 V = ∭ Ω d v V=\iiint_{\Omega} \mathrm{d} v V = ∭ Ω d v 为区域 Ω \Omega Ω 的体积. 答 应填 2 3 \frac{2}{3} 3 2 .
z ˉ = ∭ Ω z d V ∭ Ω d V = π / 3 π / 2 = 2 3 \displaystyle \begin{aligned}\bar{z}=\frac{\iiint_{\Omega} z d V}{\iiint_{\Omega} d V}=\frac{\pi / 3}{\pi / 2}=\frac{2}{3}\end{aligned} z ˉ = ∭ Ω d V ∭ Ω z d V = π /2 π /3 = 3 2 ∭ Ω z d V = ∫ 0 1 d z ∬ D z z d x d y = ∫ 0 1 π z 2 d z = π 3 \displaystyle \begin{aligned}\iiint_{\Omega} z d V=\int_0^1 d z \iint_{D_z} z d x d y=\int_0^1 \pi z^2 d z=\frac{\pi}{3}\end{aligned} ∭ Ω z d V = ∫ 0 1 d z ∬ D z z d x d y = ∫ 0 1 π z 2 d z = 3 π ∭ Ω d V = ∫ 0 1 d z ∬ D z d x d y = ∫ 0 1 π z d z = π 2 \displaystyle \begin{aligned}\iiint_{\Omega} d V=\int_0^1 d z \iint_{D_z} d x d y=\int_0^1 \pi z d z=\frac{\pi}{2}\end{aligned} ∭ Ω d V = ∫ 0 1 d z ∬ D z d x d y = ∫ 0 1 π z d z = 2 π 解 设 D = { ( x , y ) ∣ x 2 + y 2 ⩽ 1 } D=\left\{(x, y) \mid x^2+y^2 \leqslant 1\right\} D = { ( x , y ) ∣ x 2 + y 2 ⩽ 1 } , 则
z ˉ = ∬ Ω z d x d y d z ∭ Ω d x d y d z = 2 3 . \displaystyle \begin{aligned} \bar{z}=\frac{\iint_{\Omega} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z}{\iiint_{\Omega} \mathrm{d} x \mathrm{~d} y \mathrm{~d} z}=\frac{2}{3} . \end{aligned} z ˉ = ∭ Ω d x d y d z ∬ Ω z d x d y d z = 3 2 . ∭ Ω d x d y d z = ∬ D d x d y ∫ x 2 + y 2 1 d z \displaystyle \begin{aligned} \iiint_{\Omega} \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\iint_D \mathrm{~d} x \mathrm{~d} y \int_{x^2+y^2}^1 \mathrm{~d} z\end{aligned} ∭ Ω d x d y d z = ∬ D d x d y ∫ x 2 + y 2 1 d z = ∬ D ( 1 − x 2 − y 2 ) d x d y \displaystyle \begin{aligned}=\iint_D\left(1-x^2-y^2\right) \mathrm{d} x \mathrm{~d} y\end{aligned} = ∬ D ( 1 − x 2 − y 2 ) d x d y = ∫ 0 2 π d θ ∫ 0 1 ( 1 − r 2 ) r d r = π 2 , \displaystyle \begin{aligned} =\int_0^{2 \pi} \mathrm{d} \theta \int_0^1\left(1-r^2\right) r \mathrm{~d} r=\frac{\pi}{2}, \end{aligned} = ∫ 0 2 π d θ ∫ 0 1 ( 1 − r 2 ) r d r = 2 π , ∭ Ω z d x d y d z = ∬ D d x d y ∫ x 2 + y 2 1 z d z \displaystyle \begin{aligned} \iiint_{\Omega} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=\iint_D \mathrm{~d} x \mathrm{~d} y \int_{x^2+y^2}^1 z \mathrm{~d} z\end{aligned} ∭ Ω z d x d y d z = ∬ D d x d y ∫ x 2 + y 2 1 z d z = 1 2 ∬ D [ 1 − ( x 2 + y 2 ) 2 ] d x d y \displaystyle \begin{aligned}=\frac{1}{2} \iint_D\left[1-\left(x^2+y^2\right)^2\right] \mathrm{d} x \mathrm{~d} y\end{aligned} = 2 1 ∬ D [ 1 − ( x 2 + y 2 ) 2 ] d x d y = 1 2 ∫ 0 2 π d θ ∫ 0 1 ( 1 − r 4 ) r d r = π 3 , \displaystyle \begin{aligned} =\frac{1}{2} \int_0^{2 \pi} \mathrm{d} \theta \int_0^1\left(1-r^4\right) r \mathrm{~d} r=\frac{\pi}{3}, \end{aligned} = 2 1 ∫ 0 2 π d θ ∫ 0 1 ( 1 − r 4 ) r d r = 3 π , 注 由 Ω \Omega Ω 的对称性,知形心的横坐标与纵坐标 x ˉ = y ˉ = 0 \bar{x}=\bar{y}=0 x ˉ = y ˉ = 0 . (13) 设 α 1 = ( 1 , 2 , − 1 , 0 ) T , α 2 = ( 1 , 1 , 0 , 2 ) T \boldsymbol{\alpha}_1=(1,2,-1,0)^{\mathrm{T}} , \boldsymbol{\alpha}_2=(1,1,0,2)^{\mathrm{T}} α 1 = ( 1 , 2 , − 1 , 0 ) T , α 2 = ( 1 , 1 , 0 , 2 ) T , α 3 = ( 2 , 1 , 1 , a ) T \alpha_3=(2,1,1, a)^{\mathrm{T}} α 3 = ( 2 , 1 , 1 , a ) T 。若由 α 1 , α 2 , α 3 \boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3 α 1 , α 2 , α 3 生成的向量空间的维数为 2 ,则 a = a= a = \qquad -
答 应填 6 . 解 对矩阵 ( α 1 , α 2 , α 3 ) \left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right) ( α 1 , α 2 , α 3 ) 作初等行变换,( α 1 , α 2 , α 3 ) = ( 1 1 2 2 1 1 − 1 0 1 0 2 a ) → ( 1 1 2 0 1 3 0 0 a − 6 0 0 0 ) , \displaystyle \left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)=\left(\begin{array}{ccc}1 & 1 & 2 \\2 & 1 & 1 \\-1 & 0 & 1 \\0 & 2 & a\end{array}\right) \rightarrow\left(\begin{array}{ccc}1 & 1 & 2 \\0 & 1 & 3 \\0 & 0 & a-6 \\0 & 0 & 0\end{array}\right), ( α 1 , α 2 , α 3 ) = 1 2 − 1 0 1 1 0 2 2 1 1 a → 1 0 0 0 1 1 0 0 2 3 a − 6 0 , 由于此矩阵的秩为 2 , 故 a = 6 a=6 a = 6 .
设随机变量 X X X 的概率分布为 P { X = k } = C k ! , k = 0 , 1 , 2 , ⋯ P\{X=k\}=\frac{C}{k !}, k=0,1,2, \cdots P { X = k } = k ! C , k = 0 , 1 , 2 , ⋯ , 则 E ( X 2 ) = E\left(X^{2}\right)= E ( X 2 ) =
(本题共 9 小题, 共 94 分, 解答应写出文字说明、证明过程或演算步骤.)}
(本题满分 10 分)
求微分方程 y ′ ′ − 3 y ′ + 2 y = 2 x e x y^{\prime \prime}-3 y^{\prime}+2 y=2 x \mathrm{e}^{x} y ′′ − 3 y ′ + 2 y = 2 x e x 的通解.
解题步骤
求对应的齐次方程的通解.(特征方程法) 求原方程的一个特解.(待定系数法) 特征方程法求齐次方程的通解.
对应的齐次线性方程 y ′ ′ − 3 y ′ + 2 y = 0 y^{\prime \prime}-3 y^{\prime}+2 y=0 y ′′ − 3 y ′ + 2 y = 0 特征方程为 λ 2 − 3 λ + 2 = 0 \lambda^2-3 \lambda+2=0 λ 2 − 3 λ + 2 = 0 . ( λ − 1 ) ( λ − 2 ) = 0 ⇒ λ 1 = 1 , λ 2 = 2 \displaystyle \begin{aligned} & (\lambda-1)(\lambda-2)=0 \Rightarrow \lambda_1=1, \lambda_2=2 \end{aligned} ( λ − 1 ) ( λ − 2 ) = 0 ⇒ λ 1 = 1 , λ 2 = 2 y = C 1 e x + C 2 e 2 x . \displaystyle \begin{aligned} y=C_1 e^x+C_2 e^{2 x} . \end{aligned} y = C 1 e x + C 2 e 2 x . 待定系数法求特解
设原方程的一个特解为y ∗ = ( a x + b ) x e x y^*=(a x+b) x \mathrm{e}^x y ∗ = ( a x + b ) x e x ( y ∗ ) ′ = ( a x 2 + b x ) e x + ( 2 a x + b ) e x = ( a x 2 + ( 2 a + b ) x + b ) e x \left(y^*\right)^{\prime}=\left(a x^2+b x\right) e^x+(2 a x+b) e^x=\left(a x^2+(2 a+b) x+b\right) e^x ( y ∗ ) ′ = ( a x 2 + b x ) e x + ( 2 a x + b ) e x = ( a x 2 + ( 2 a + b ) x + b ) e x y ′ ′ = [ a x 2 + ( 2 a + b ) x + b ] e x + [ 2 a x + 2 a + b ] e x \displaystyle \begin{aligned} y'' =\left[a x^2+(2 a+b) x+b\right] e^x+[2 a x+2 a+b] e^x \end{aligned} y ′′ = [ a x 2 + ( 2 a + b ) x + b ] e x + [ 2 a x + 2 a + b ] e x = [ a x 2 + ( 4 a + b ) x + 2 ( a + b ) ] e x . \displaystyle \begin{aligned} =\left[a x^2+(4 a+b) x+2(a+b)\right] e^x . \end{aligned} = [ a x 2 + ( 4 a + b ) x + 2 ( a + b ) ] e x . 将y , y ′ , y ′ ′ \displaystyle \begin{aligned}y,y',y''\end{aligned} y , y ′ , y ′′ 代入y ′ ′ − 3 y ′ + 2 y = 2 x e x y^{\prime \prime}-3 y^{\prime}+2 y=2 x \mathrm{e}^{x} y ′′ − 3 y ′ + 2 y = 2 x e x 得 ( a x 2 + 4 a x + b x + 2 a + 2 b ) e x − 3 ( a x 2 + 2 a x + b x + b ) e x + 2 ( a x 2 + b x ) e x = 2 x e x \left(a x^2+4 a x+b x+2 a+2 b\right) \mathrm{e}^x-3\left(a x^2+2 a x+b x+b\right) \mathrm{e}^x+2\left(a x^2+b x\right) \mathrm{e}^x=2 x \mathrm{e}^x ( a x 2 + 4 a x + b x + 2 a + 2 b ) e x − 3 ( a x 2 + 2 a x + b x + b ) e x + 2 ( a x 2 + b x ) e x = 2 x e x 同时出现三项:x 2 e x , x e x , e x \displaystyle \begin{aligned}x^2 e^x , x e^x , e^x\end{aligned} x 2 e x , x e x , e x ,对比它们的系数 x 2 e x a − 3 a + 2 a = 0 \displaystyle \begin{aligned} & x^2 e^x \quad a-3 a+2 a=0 \end{aligned} x 2 e x a − 3 a + 2 a = 0 x e x 4 a + b − 6 a − 3 b + 2 b = 2 ⇒ a = − 1 \displaystyle \begin{aligned} x e^x \quad 4 a+b-6 a-3 b+2 b=2 \Rightarrow a=-1 \end{aligned} x e x 4 a + b − 6 a − 3 b + 2 b = 2 ⇒ a = − 1 e x 2 ( a + b ) − 3 b = 2 a − b = 0 ⇒ b = − 2 \displaystyle \begin{aligned} e^x \quad 2(a+b)-3 b=2 a-b=0 \quad \Rightarrow b=-2 \end{aligned} e x 2 ( a + b ) − 3 b = 2 a − b = 0 ⇒ b = − 2 求得特解y ∗ = ( − x 2 − 2 x ) e x \displaystyle \begin{aligned} y^*=\left(-x^2-2 x\right) e^x \end{aligned} y ∗ = ( − x 2 − 2 x ) e x 齐次特解和特解组合得非齐次的通解
因此, 原方程的通解为y = Y + y ∗ = C 1 e x + C 2 e 2 x − ( x 2 + 2 x ) e x , y=Y+y^*=C_1 \mathrm{e}^x+C_2 \mathrm{e}^{2 x}-\left(x^2+2 x\right) \mathrm{e}^x, y = Y + y ∗ = C 1 e x + C 2 e 2 x − ( x 2 + 2 x ) e x , 1987 年数二试题 求微分方程 y ′ ′ + 2 y ′ + y = x e x y^{\prime \prime}+2 y^{\prime}+y=x \mathrm{e}^x y ′′ + 2 y ′ + y = x e x 的通解.
1990 年数一试题求微分方程 y ′ ′ + 4 y ′ + 4 y = e − 2 x y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{-2 x} y ′′ + 4 y ′ + 4 y = e − 2 x 的通解.
1990 年数二试题求微分方程 y ′ ′ + 4 y ′ + 4 y = e a x y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{a x} y ′′ + 4 y ′ + 4 y = e a x 的通解,其中 a a a 为实数。
1991 年数二试题 求微分方程 y ′ ′ + y = x + cos x y^{\prime \prime}+y=x+\cos x y ′′ + y = x + cos x 的通解.
1992 年数一试题 求微分方程 y ′ ′ + 2 y ′ − 3 y = e − 3 x y^{\prime \prime}+2 y^{\prime}-3 y=\mathrm{e}^{-3 x} y ′′ + 2 y ′ − 3 y = e − 3 x 的通解。
1992 年数二试题 求微分方程 y ′ ′ − 3 y ′ + 2 y = x e x y^{\prime \prime}-3 y^{\prime}+2 y=x \mathrm{e}^x y ′′ − 3 y ′ + 2 y = x e x 的通解。
1994 年数二试题 求微分方程 y ′ ′ + a 2 y = sin x y^{\prime \prime}+a^2 y=\sin x y ′′ + a 2 y = sin x 的通解, 其中常数 a > 0 a>0 a > 0 .
1996 年数一试题 微分方程 y ′ ′ − 2 y ′ + 2 y = e x y^{\prime \prime}-2 y^{\prime}+2 y=\mathrm{e}^x y ′′ − 2 y ′ + 2 y = e x 的通解为 \qquad .
2007 年数一、二试题 二阶常系数非齐次线性微分方程y ′ ′ − 4 y ′ + 3 y = 2 e 2 x y^{\prime \prime}-4 y^{\prime}+3 y=2 \mathrm{e}^{2 x} y ′′ − 4 y ′ + 3 y = 2 e 2 x 的通解为 \qquad
特征方程法
特征方程 λ 2 + p λ + q = 0 \displaystyle \begin{aligned} \lambda^2 + p\lambda + q = 0 \end{aligned} λ 2 + p λ + q = 0 的根 微分方程 y ′ ′ + p y ′ + q y = 0 \displaystyle \begin{aligned} y'' + py' + qy = 0 \end{aligned} y ′′ + p y ′ + q y = 0 的通解 两个不相等的实根 λ 1 , λ 2 \displaystyle \begin{aligned} \lambda_1, \lambda_2 \end{aligned} λ 1 , λ 2 y = C 1 e λ 1 x + C 2 e λ 2 x \displaystyle \begin{aligned} y = C_1e^{\lambda_1 x} + C_2e^{\lambda_2 x} \end{aligned} y = C 1 e λ 1 x + C 2 e λ 2 x 两个相等的实根 λ 1 = λ 2 \displaystyle \begin{aligned} \lambda_1 = \lambda_2 \end{aligned} λ 1 = λ 2 y = ( C 1 + C 2 x ) e λ 1 x \displaystyle \begin{aligned} y = (C_1 + C_2 x)e^{\lambda_1 x} \end{aligned} y = ( C 1 + C 2 x ) e λ 1 x 对共轭复根 λ 1 , 2 = α ± β i \displaystyle \begin{aligned} \lambda_{1,2} = \alpha \pm \beta i \end{aligned} λ 1 , 2 = α ± β i y = e α x ( C 1 cos β x + C 2 sin β x ) \displaystyle \begin{aligned} y = e^{\alpha x}(C_1 \cos \beta x + C_2 \sin \beta x) \end{aligned} y = e αx ( C 1 cos β x + C 2 sin β x )
待定系数法 当 f ( x ) = e λ x P m ( x ) f(x)=\mathrm{e}^{\lambda x} P_m(x) f ( x ) = e λ x P m ( x ) , 其中 λ \lambda λ 为常数, P m ( x ) P_m(x) P m ( x ) 是 x x x 的一个 m m m 次多项式时, y ′ ′ + p y ′ + q y = f ( x ) y^{\prime \prime}+p y^{\prime}+q y=f(x) y ′′ + p y ′ + q y = f ( x ) 有形如y ∗ = x k R m ( x ) e λ x y^*=x^k R_m(x) \mathrm{e}^{\lambda x} y ∗ = x k R m ( x ) e λ x 的特解, x k x^k x k 当 λ \lambda λ 不是特征方程的根时, k = 0 k=0 k = 0 ; 当 λ \lambda λ 是特征方程的单根时, k = 1 k=1 k = 1 ; 当 λ \lambda λ 是特征方程的重根时, k = 2 k=2 k = 2 . 其中 R m ( x ) R_m(x) R m ( x ) 是与 P m ( x ) P_m(x) P m ( x ) 同次的多项式. e λ x \displaystyle \begin{aligned}\mathrm{e}^{\lambda x}\end{aligned} e λ x 照抄 (本题满分 10 分)
求函数 f ( x ) = ∫ 1 x 2 ( x 2 − t ) e − t 2 d t \displaystyle f(x)=\int_{1}^{x^{2}}\left(x^{2}-t\right) \mathrm{e}^{-t^{2}} \mathrm{~d} t f ( x ) = ∫ 1 x 2 ( x 2 − t ) e − t 2 d t 的单调区间与极值.
整体思路总结:
对 f ( x ) f(x) f ( x ) 进行分解并求导。 通过解方程找到驻点 x = 0 , ± 1 x = 0, \pm 1 x = 0 , ± 1 。 分析 f ′ ( x ) f'(x) f ′ ( x ) 的符号来确定单调区间。 计算极值点 x = 0 , ± 1 x = 0, \pm 1 x = 0 , ± 1 时的 f ( x ) f(x) f ( x ) 值。 求 f ( x ) f(x) f ( x ) 的导数
分解 f ( x ) f(x) f ( x ) f ( x ) = 拆开 x 2 ∫ 1 x 2 e − t 2 d t − ∫ 1 x 2 t e − t 2 d t \displaystyle f(x) \xlongequal[]{拆开}x^2 \int_1^{x^2} e^{-t^2} \, \mathrm{d}t - \int_1^{x^2} t e^{-t^2} \, \mathrm{d}t f ( x ) 拆开 x 2 ∫ 1 x 2 e − t 2 d t − ∫ 1 x 2 t e − t 2 d t 求导 f ′ ( x ) f'(x) f ′ ( x ) 得 f ′ ( x ) = 2 x ∫ 1 x 2 e − t 2 d t + 2 x 3 e − x 4 − 2 x 3 e − x 4 = 后两项相减为 0 2 x ∫ 1 x 2 e − t 2 d t \displaystyle f'(x) = 2x \int_1^{x^2} e^{-t^2} \, \mathrm{d}t + 2x^3 e^{-x^4} - 2x^3 e^{-x^4}\xlongequal[]{后两项相减为0}2x \int_1^{x^2} e^{-t^2} \, \mathrm{d}t f ′ ( x ) = 2 x ∫ 1 x 2 e − t 2 d t + 2 x 3 e − x 4 − 2 x 3 e − x 4 后两项相减为 0 2 x ∫ 1 x 2 e − t 2 d t 确定驻点
解方程 f ′ ( x ) = 0 → ∫ 1 x 2 = 0 2 x = 0 x = 0 , ± 1 \displaystyle f'(x) = 0 \xrightarrow[\int_{1}^{x^{2}}=0]{2x=0}x = 0, \pm 1 f ′ ( x ) = 0 2 x = 0 ∫ 1 x 2 = 0 x = 0 , ± 1 - 分析 f ′ ( x ) f'(x) f ′ ( x ) 的符号 在区间 ( − ∞ , − 1 ) (-∞, -1) ( − ∞ , − 1 ) f ′ ( x ) = 2 x ⏟ < 0 ∫ 1 x 2 e − t 2 ⏟ 因 x 2 > 1 ,则 > 0 d t → 负正 < 0 \displaystyle f'(x) = \underbrace{2x}_{<0} \underbrace{\int_1^{x^2} e^{-t^2}}_{因x^2>1,则>0} \, \mathrm{d}t \xrightarrow[]{负正}<0 f ′ ( x ) = < 0 2 x 因 x 2 > 1 ,则 > 0 ∫ 1 x 2 e − t 2 d t 负正 < 0 f ′ ( x ) < 0 f'(x) < 0 f ′ ( x ) < 0 ,f ( x ) f(x) f ( x ) 递减 在区间 ( − 1 , 0 ) (-1, 0) ( − 1 , 0 ) f ′ ( x ) = 2 x ⏟ < 0 ∫ 1 x 2 e − t 2 ⏟ 因 x 2 < 1 ,则 < 0 d t → 负负 > 0 \displaystyle f'(x) = \underbrace{2x}_{<0} \underbrace{\int_1^{x^2} e^{-t^2}}_{因x^2<1,则<0} \, \mathrm{d}t\xrightarrow[]{负负} >0 f ′ ( x ) = < 0 2 x 因 x 2 < 1 ,则 < 0 ∫ 1 x 2 e − t 2 d t 负负 > 0 f ′ ( x ) > 0 f'(x) > 0 f ′ ( x ) > 0 ,f ( x ) f(x) f ( x ) 递增 在区间 ( 0 , 1 ) (0, 1) ( 0 , 1 ) f ′ ( x ) = 2 x ⏟ > 0 ∫ 1 x 2 e − t 2 ⏟ 因 x 2 < 1 ,则 < 0 d t → 正负 < 0 \displaystyle f'(x) = \underbrace{2x}_{>0} \underbrace{\int_1^{x^2} e^{-t^2}}_{因x^2<1,则<0} \, \mathrm{d}t \xrightarrow[]{正负} <0 f ′ ( x ) = > 0 2 x 因 x 2 < 1 ,则 < 0 ∫ 1 x 2 e − t 2 d t 正负 < 0 f ′ ( x ) < 0 f'(x) < 0 f ′ ( x ) < 0 ,f ( x ) f(x) f ( x ) 递减 在区间 ( 1 , + ∞ ) (1, +∞) ( 1 , + ∞ ) f ′ ( x ) = 2 x ⏟ > 0 ∫ 1 x 2 e − t 2 ⏟ 因 x 2 > 1 ,则 > 0 d t → 正正 > 0 \displaystyle f'(x) = \underbrace{2x}_{>0} \underbrace{\int_1^{x^2} e^{-t^2}}_{因x^2>1,则>0} \, \mathrm{d}t \xrightarrow[]{正正}>0 f ′ ( x ) = > 0 2 x 因 x 2 > 1 ,则 > 0 ∫ 1 x 2 e − t 2 d t 正正 > 0 f ′ ( x ) > 0 f'(x) > 0 f ′ ( x ) > 0 ,f ( x ) f(x) f ( x ) 递增 确定极值:增减性如图:↘ ↗ ↘ ↗ ↘↗↘↗ ↘↗↘↗
计算 f ( 0 ) f(0) f ( 0 ) f ( 0 ) = − ∫ 1 0 t e − t 2 d t = 1 2 ( 1 − e − 1 ) \displaystyle f(0) = -\int_1^0 t e^{-t^2} \, \mathrm{d}t = \frac{1}{2}(1 - e^{-1}) f ( 0 ) = − ∫ 1 0 t e − t 2 d t = 2 1 ( 1 − e − 1 ) 计算 f ( ± 1 ) f(\pm 1) f ( ± 1 ) f ( ± 1 ) = ∫ 1 1 ( 1 − t ) e − t 2 d t = 0 \displaystyle f(\pm 1) = \int_1^1 (1 - t) e^{-t^2} \, \mathrm{d}t = 0 f ( ± 1 ) = ∫ 1 1 ( 1 − t ) e − t 2 d t = 0 得出结论 单调增加区间:( − 1 , 0 ) (-1, 0) ( − 1 , 0 ) 和 ( 1 , + ∞ ) (1, +∞) ( 1 , + ∞ ) 单调递减区间:( − ∞ , − 1 ) (-∞, -1) ( − ∞ , − 1 ) 和 ( 0 , 1 ) (0, 1) ( 0 , 1 ) 两个极小值点:x = ± 1 x = \pm 1 x = ± 1 时 f ( ± 1 ) = 0 f(\pm 1) = 0 f ( ± 1 ) = 0 一个极大值点:x = 0 x = 0 x = 0 时 f ( 0 ) = 1 2 ( 1 − e − 1 ) f(0) = \frac{1}{2}(1 - e^{-1}) f ( 0 ) = 2 1 ( 1 − e − 1 ) (本题满分 10 分) (抽象题 ) ( I ) 比较 ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t \displaystyle \int_{0}^{1}|\ln t|[\ln (1+t)]^{n} \mathrm{~d} t ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t 与 ∫ 0 1 t n ∣ ln t ∣ d t ( n = 1 , 2 , ⋯ ) \displaystyle \int_{0}^{1} t^{n}|\ln t| \mathrm{d} t(n=1,2, \cdots) ∫ 0 1 t n ∣ ln t ∣ d t ( n = 1 , 2 , ⋯ ) 的大小, 说明理由; ( II ) 记 u n = ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t ( n = 1 , 2 , ⋯ ) \displaystyle u_{n}=\int_{0}^{1}|\ln t|[\ln (1+t)]^{n} \mathrm{~d} t(n=1,2, \cdots) u n = ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t ( n = 1 , 2 , ⋯ ) , 求极限 lim n → ∞ u n \displaystyle \lim _{n \rightarrow \infty} u_{n} n → ∞ lim u n .
解 (I ) 当 0 ⩽ t ⩽ 1 0 \leqslant t \leqslant 1 0 ⩽ t ⩽ 1 时, 因为 0 ⩽ ln ( 1 + t ) ⩽ t 0 \leqslant \ln (1+t) \leqslant t 0 ⩽ ln ( 1 + t ) ⩽ t , 所以
0 ⩽ ∣ ln t ∣ [ ln ( 1 + t ) ] n ⩽ t n ∣ ln t ∣ , 0 \leqslant|\ln t|[\ln (1+t)]^n \leqslant t^n|\ln t|, 0 ⩽ ∣ ln t ∣ [ ln ( 1 + t ) ] n ⩽ t n ∣ ln t ∣ , 由定积分的性质,得 ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t ⩽ ∫ 0 1 t n ∣ ln t ∣ d t ( n = 1 , 2 , ⋯ ) \displaystyle \quad \int_0^1|\ln t|[\ln (1+t)]^n \mathrm{~d} t \leqslant \int_0^1 t^n|\ln t| \mathrm{d} t(n=1,2, \cdots) ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t ⩽ ∫ 0 1 t n ∣ ln t ∣ d t ( n = 1 , 2 , ⋯ ) . ( II) 由 ( I ) 知0 ⩽ u n = ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t ⩽ ∫ 0 1 t n ∣ ln t ∣ d t . \displaystyle 0 \leqslant u_n=\int_0^1|\ln t|[\ln (1+t)]^n \mathrm{~d} t \leqslant \int_0^1 t^n|\ln t| \mathrm{d} t . 0 ⩽ u n = ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t ⩽ ∫ 0 1 t n ∣ ln t ∣ d t . 因为∫ 0 1 t n ∣ ln t ∣ d t = − ∫ 0 1 t n ln t d t = − 1 n + 1 ∫ 0 1 ln t d ( t n + 1 ) = − t n + 1 n + 1 ln t ∣ 0 1 + 1 n + 1 ∫ 0 1 t n d t = 1 ( n + 1 ) 2 , \displaystyle \int_0^1 t^n|\ln t| \mathrm{d} t=-\int_0^1 t^n \ln t \mathrm{~d} t=-\frac{1}{n+1} \int_0^1 \ln t \mathrm{~d}\left(t^{n+1}\right)=-\left.\frac{t^{n+1}}{n+1} \ln t\right|_0 ^1+\frac{1}{n+1} \int_0^1 t^n \mathrm{~d} t=\frac{1}{(n+1)^2}, ∫ 0 1 t n ∣ ln t ∣ d t = − ∫ 0 1 t n ln t d t = − n + 1 1 ∫ 0 1 ln t d ( t n + 1 ) = − n + 1 t n + 1 ln t 0 1 + n + 1 1 ∫ 0 1 t n d t = ( n + 1 ) 2 1 , 所以 lim n → ∞ ∫ 0 1 t n ∣ ln t ∣ d t = 0 \displaystyle \lim _{n \rightarrow \infty} \int_0^1 t^n|\ln t| \mathrm{d} t=0 n → ∞ lim ∫ 0 1 t n ∣ ln t ∣ d t = 0 . 故由夹逼准则知 lim n → ∞ u n = 0 \displaystyle \lim _{n \rightarrow \infty} u_n=0 n → ∞ lim u n = 0 . 注(1)本题第一问用到基本不等式: x 1 + x < ln ( 1 + x ) < x , x ∈ ( 0 , + ∞ ) \frac{x}{1+x}<\ln (1+x)<x, x \in(0,+\infty) 1 + x x < ln ( 1 + x ) < x , x ∈ ( 0 , + ∞ ) . (2) 第二问实际上有更一般的结论. 若 f ( x ) f(x) f ( x ) 在 [ 0 , 1 ] [0,1] [ 0 , 1 ] 上连续, 则 lim n → ∞ ∫ 0 1 x n f ( x ) d x = 0 \displaystyle \lim _{n \rightarrow \infty} \int_0^1 x^n f(x) \mathrm{d} x=0 n → ∞ lim ∫ 0 1 x n f ( x ) d x = 0 (可用夹逼准则简单验证). 由于 lim r → 0 + t ∣ ln t ∣ = 0 \displaystyle \lim _{r \rightarrow 0^{+}} t|\ln t|=0 r → 0 + lim t ∣ ln t ∣ = 0 , 记 f ( t ) = t ∣ ln t ∣ , 0 < t ⩽ 1 f(t)=t|\ln t|, 0<t \leqslant 1 f ( t ) = t ∣ ln t ∣ , 0 < t ⩽ 1 , 则可补充定义 f ( 0 ) = 0 f(0)=0 f ( 0 ) = 0 . 这样 f ( t ) = t ∣ ln t ∣ f(t)=t|\ln t| f ( t ) = t ∣ ln t ∣ 在 [ 0 , 1 ] [0,1] [ 0 , 1 ] 上连续, 再根据上面的结论便有lim n → ∞ ∫ 0 1 t n − 1 ⋅ t ∣ ln t ∣ d t = 0 , \displaystyle \begin{aligned} \lim _{n \rightarrow \infty} \int_0^1 t^{n-1} \cdot t|\ln t| \mathrm{d} t=0, \end{aligned} n → ∞ lim ∫ 0 1 t n − 1 ⋅ t ∣ ln t ∣ d t = 0 , lim n → ∞ ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t = 0. \displaystyle \begin{aligned} \lim _{n \rightarrow \infty} \int_0^1|\ln t|[\ln (1+t)]^n \mathrm{~d} t=0 . \end{aligned} n → ∞ lim ∫ 0 1 ∣ ln t ∣ [ ln ( 1 + t ) ] n d t = 0. (本题满分 10 分)
求幂级数 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n} n = 1 ∑ ∞ 2 n − 1 ( − 1 ) n − 1 x 2 n 的收敛域及和函数.
解 记 u n ( x ) = ( − 1 ) n − 1 2 n − 1 x 2 n u_n(x)=\frac{(-1)^{n-1}}{2 n-1} x^{2 n} u n ( x ) = 2 n − 1 ( − 1 ) n − 1 x 2 n . 由于
lim n → ∞ ∣ u n + 1 ( x ) u n ( x ) ∣ = lim n → ∞ 2 n − 1 2 n + 1 x 2 = x 2 , \displaystyle \lim _{n \rightarrow \infty}\left|\frac{u_{n+1}(x)}{u_n(x)}\right|=\lim _{n \rightarrow \infty} \frac{2 n-1}{2 n+1} x^2=x^2, n → ∞ lim u n ( x ) u n + 1 ( x ) = n → ∞ lim 2 n + 1 2 n − 1 x 2 = x 2 , 所以,当 ∣ x ∣ < 1 |x|<1 ∣ x ∣ < 1 时, ∑ n = 1 ∞ u n ( x ) \displaystyle \sum_{n=1}^{\infty} u_n(x) n = 1 ∑ ∞ u n ( x ) 绝对收玫; 当 ∣ x ∣ > 1 |x|>1 ∣ x ∣ > 1 时, lim n → ∞ ∣ u n ( x ) ∣ = + ∞ , ∑ n = 1 ∞ u n ( x ) \displaystyle \lim _{n \rightarrow \infty}\left|u_n(x)\right|=+\infty, \sum_{n=1}^{\infty} u_n(x) n → ∞ lim ∣ u n ( x ) ∣ = + ∞ , n = 1 ∑ ∞ u n ( x ) 发散. 因此帛级数 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n} n = 1 ∑ ∞ 2 n − 1 ( − 1 ) n − 1 x 2 n 的收敛半径 R = 1 R=1 R = 1 . 当 x = ± 1 x= \pm 1 x = ± 1 时,∑ n = 1 ∞ u n ( ± 1 ) = ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 , \displaystyle \sum_{n=1}^{\infty} u_n( \pm 1)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} \text {, } n = 1 ∑ ∞ u n ( ± 1 ) = n = 1 ∑ ∞ 2 n − 1 ( − 1 ) n − 1 , 根据莱布尼茨判别法知此级数收敛. 故案级数 ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n} n = 1 ∑ ∞ 2 n − 1 ( − 1 ) n − 1 x 2 n 的收敛域为 [ − 1 , 1 ] [-1,1] [ − 1 , 1 ] . 设S ( x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n − 1 ( − 1 ⩽ x ⩽ 1 ) . \displaystyle S(x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n-1}(-1 \leqslant x \leqslant 1) . S ( x ) = n = 1 ∑ ∞ 2 n − 1 ( − 1 ) n − 1 x 2 n − 1 ( − 1 ⩽ x ⩽ 1 ) . 由于 S ′ ( x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 x 2 n − 2 = 1 1 + x 2 \displaystyle S^{\prime}(x)=\sum_{n=1}^{\infty}(-1)^{n-1} x^{2 n-2}=\frac{1}{1+x^2} S ′ ( x ) = n = 1 ∑ ∞ ( − 1 ) n − 1 x 2 n − 2 = 1 + x 2 1 , 且 S ( 0 ) = 0 S(0)=0 S ( 0 ) = 0 , 所以S ( x ) = ∫ 0 x d t 1 + t 2 = arctan x , \displaystyle S(x)=\int_0^x \frac{\mathrm{d} t}{1+t^2}=\arctan x, S ( x ) = ∫ 0 x 1 + t 2 d t = arctan x , 从而∑ n = 1 ∞ ( − 1 ) n − 1 2 n − 1 x 2 n = x S ( x ) = x arctan x ( − 1 ⩽ x ⩽ 1 ) . \displaystyle \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} x^{2 n}=x S(x)=x \arctan x(-1 \leqslant x \leqslant 1) . n = 1 ∑ ∞ 2 n − 1 ( − 1 ) n − 1 x 2 n = x S ( x ) = x arctan x ( − 1 ⩽ x ⩽ 1 ) . (本题满分 10 分) 设 P P P 为椭球面 S : x 2 + y 2 + z 2 − y z = 1 S: x^{2}+y^{2}+z^{2}-y z=1 S : x 2 + y 2 + z 2 − yz = 1 上的动点, 若 S S S 在点 P P P 处的切平面与 x O y x O y x O y 面垂直, 求点 P P P 的轨迹 C C C , 并计算曲面积分 I = ∬ Σ ( x + 3 ) ∣ y − 2 z ∣ 4 + y 2 + z 2 − 4 y z d S \displaystyle I=\iint_{\Sigma} \frac{(x+\sqrt{3})|y-2 z|}{\sqrt{4+y^{2}+z^{2}-4 y z}} \mathrm{~d} S I = ∬ Σ 4 + y 2 + z 2 − 4 yz ( x + 3 ) ∣ y − 2 z ∣ d S , 其中 Σ \displaystyle \Sigma Σ 是椭球面 S S S 位于曲线 C C C 上 方的部分. (抽象题 )
椭球面 S : x 2 + y 2 + z 2 − y z = 1 S: x^2+y^2+z^2-y z=1 S : x 2 + y 2 + z 2 − yz = 1 在点 P P P 处的法向量是 n = ( 2 x , 2 y − z , 2 z − y ) , n=(2 x, 2 y-z, 2 z-y) \text {, } n = ( 2 x , 2 y − z , 2 z − y ) , x O y x O y x O y 面的法向量是 k = ( 0 , 0 , 1 ) k=(0,0,1) k = ( 0 , 0 , 1 ) .S S S 在点 P P P 处的切平面与 x O y x O y x O y 面垂直的充分必要条件是 n ⋅ k = 2 z − y = 0 . n \cdot k=2 z-y=0 \text {. } n ⋅ k = 2 z − y = 0 . 所以点 P P P 的轨迹 C C C 的方程为 { 2 z − y = 0 , x 2 + y 2 + z 2 − y z = 1 , \displaystyle \begin{aligned} \left\{\begin{array}{l}2 z-y=0, \\x^2+y^2+z^2-y z=1,\end{array}\right. \end{aligned} { 2 z − y = 0 , x 2 + y 2 + z 2 − yz = 1 , { 2 z − y = 0 , x 2 + 3 4 y 2 = 1. \displaystyle \begin{aligned} \left\{\begin{array}{l}2 z-y=0, \\x^2+\frac{3}{4} y^2=1 .\end{array}\right. \end{aligned} { 2 z − y = 0 , x 2 + 4 3 y 2 = 1. 取 D = { ( x , y ) ∣ x 2 + 3 4 y 2 ⩽ 1 } D=\left\{(x, y) \mid x^2+\frac{3}{4} y^2 \leqslant 1\right\} D = { ( x , y ) ∣ x 2 + 4 3 y 2 ⩽ 1 } , 记曲面 Σ \displaystyle \Sigma Σ 的方程为 z = z ( x , y ) , ( x , y ) ∈ D z=z(x, y),(x, y) \in D z = z ( x , y ) , ( x , y ) ∈ D . 由于1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 = 1 + ( 2 x y − 2 z ) 2 + ( 2 y − z y − 2 z ) 2 = 4 + y 2 + z 2 − 4 y z ∣ y − 2 z ∣ , \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^2+\left(\frac{\partial z}{\partial y}\right)^2}=\sqrt{1+\left(\frac{2 x}{y-2 z}\right)^2+\left(\frac{2 y-z}{y-2 z}\right)^2}=\frac{\sqrt{4+y^2+z^2-4 y z}}{|y-2 z|}, 1 + ( ∂ x ∂ z ) 2 + ( ∂ y ∂ z ) 2 = 1 + ( y − 2 z 2 x ) 2 + ( y − 2 z 2 y − z ) 2 = ∣ y − 2 z ∣ 4 + y 2 + z 2 − 4 yz , 所以 I = ∬ D ( x + 3 ) ∣ y − 2 z ∣ 4 + y 2 + z 2 − 4 y z ⋅ 4 + y 2 + z 2 − 4 y z ∣ y − 2 z ∣ d x d y = ∬ D ( x + 3 ) d x d y . I=\iint_D \frac{(x+\sqrt{3})|y-2 z|}{\sqrt{4+y^2+z^2-4 y z}} \cdot \frac{\sqrt{4+y^2+z^2-4 y z}}{|y-2 z|} \mathrm{d} x \mathrm{~d} y=\iint_D(x+\sqrt{3}) \mathrm{d} x \mathrm{~d} y . I = ∬ D 4 + y 2 + z 2 − 4 yz ( x + 3 ) ∣ y − 2 z ∣ ⋅ ∣ y − 2 z ∣ 4 + y 2 + z 2 − 4 yz d x d y = ∬ D ( x + 3 ) d x d y . 又因为 ∬ D x d x d y = 0 , ∬ D 3 d x d y = 2 π \iint_D x \mathrm{~d} x \mathrm{~d} y=0, \iint_D \sqrt{3} \mathrm{~d} x \mathrm{~d} y=2 \pi ∬ D x d x d y = 0 , ∬ D 3 d x d y = 2 π , 所以I = ∬ D ( x + 3 ) d x d y = 2 π . I=\iint_D(x+\sqrt{3}) \mathrm{d} x \mathrm{~d} y=2 \pi . I = ∬ D ( x + 3 ) d x d y = 2 π . 注 正确写出轨迹方程 是后续解题的关键. (本题满分 11 分)
设 A = ( λ 1 1 0 λ − 1 0 1 1 λ ) , b = ( a 1 1 ) \displaystyle \boldsymbol{A}=\left(\begin{array}{ccc}\lambda & 1 & 1 \\ 0 & \lambda-1 & 0 \\ 1 & 1 & \lambda\end{array}\right), \boldsymbol{b}=\left(\begin{array}{l}a \\ 1 \\ 1\end{array}\right) A = λ 0 1 1 λ − 1 1 1 0 λ , b = a 1 1 . 已知线性方程组 A x = b \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} A x = b 存在 2 个不同的解.
(I) 求 λ , a \lambda, a λ , a ; (II) 求方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b 的通解. (21) (本题满分 11 分)
解 (I )因为非齐次线性方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b 有两个不同的解, 即解不是唯一的, 所以系数行列式
∣ A ∣ = ∣ λ 1 1 0 λ − 1 0 1 1 λ ∣ = ( λ − 1 ) 2 ( λ + 1 ) = 0 , \displaystyle |\boldsymbol{A}|=\left|\begin{array}{ccc}\lambda & 1 & 1 \\0 & \lambda-1 & 0 \\1 & 1 & \lambda\end{array}\right|=(\lambda-1)^2(\lambda+1)=0, ∣ A ∣ = λ 0 1 1 λ − 1 1 1 0 λ = ( λ − 1 ) 2 ( λ + 1 ) = 0 , 解得 λ = − 1 \lambda=-1 λ = − 1 或 1 (二重). 当 λ = 1 \lambda=1 λ = 1 时,方程组的增广矩阵( A : b ) = ( 1 1 1 a 0 0 0 1 1 1 1 1 ) → ( 1 1 1 1 0 0 0 1 0 0 0 a − 1 ) \displaystyle (\boldsymbol{A}: \boldsymbol{b})=\left(\begin{array}{lll:l}1 & 1 & 1 & a \\0 & 0 & 0 & 1 \\1 & 1 & 1 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}1 & 1 & 1 & 1 \\0 & 0 & 0 & 1 \\0 & 0 & 0 & a-1\end{array}\right) ( A : b ) = 1 0 1 1 0 1 1 0 1 a 1 1 → 1 0 0 1 0 0 1 0 0 1 1 a − 1 的秩为 2, 系数矩阵 A \boldsymbol{A} A 的秩为 1, 方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b 无解, 故 λ = 1 \lambda=1 λ = 1 应舍去. 当 λ = − 1 \lambda=-1 λ = − 1 时,对方程组 A x = b A x=b A x = b 的增广矩阵作初等行变换:( A : b ) = ( − 1 1 1 a 0 − 2 0 1 1 1 − 1 1 ) → ( 1 1 − 1 1 0 2 0 − 1 0 0 0 a + 2 ) = B . \displaystyle (\boldsymbol{A}: \boldsymbol{b})=\left(\begin{array}{ccc:c}-1 & 1 & 1 & a \\0 & -2 & 0 & 1 \\1 & 1 & -1 & 1\end{array}\right) \rightarrow\left(\begin{array}{ccc:c}1 & 1 & -1 & 1 \\0 & 2 & 0 & -1 \\0 & 0 & 0 & a+2\end{array}\right)=\boldsymbol{B} . ( A : b ) = − 1 0 1 1 − 2 1 1 0 − 1 a 1 1 → 1 0 0 1 2 0 − 1 0 0 1 − 1 a + 2 = B . 因为方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b 有解, 所以 a + 2 = 0 a+2=0 a + 2 = 0 , 即 a = − 2 a=-2 a = − 2 . 综上, λ = − 1 , a = − 2 \lambda=-1, a=-2 λ = − 1 , a = − 2 . (II) 当 λ = − 1 , a = − 2 \lambda=-1, a=-2 λ = − 1 , a = − 2 时,继续对 (I) 中的矩阵 B B B 作初等行变换得B → ( 1 0 − 1 3 2 0 1 0 − 1 2 0 0 0 0 ) , \displaystyle \begin{aligned} \boldsymbol{B} \rightarrow\left(\begin{array}{ccc:c}1 & 0 & -1 & \frac{3}{2} \\0 & 1 & 0 & -\frac{1}{2} \\0 & 0 & 0 & 0\end{array}\right), \end{aligned} B → 1 0 0 0 1 0 − 1 0 0 2 3 − 2 1 0 , x = 1 2 ( 3 − 1 0 ) + k ( 1 0 1 ) , \displaystyle \begin{aligned} \boldsymbol{x}=\frac{1}{2}\left(\begin{array}{c}3 \\-1 \\0\end{array}\right)+k\left(\begin{array}{l}1 \\0 \\1\end{array}\right), \end{aligned} x = 2 1 3 − 1 0 + k 1 0 1 , 于是方程组 A x = b \boldsymbol{A x}=\boldsymbol{b} Ax = b 的通解为 其中 k k k 为任意常数. 注 对克拉默法则要理解清楚, 若 ∣ A ∣ ≠ 0 |A| \neq 0 ∣ A ∣ = 0 , 则 A x = b A x=b A x = b 有唯一解; 若 ∣ A ∣ = 0 |A|=0 ∣ A ∣ = 0 , 则 A x = b A x=b A x = b 没有唯.一解, 此时 方程组可能无解,也可能有无穷多解.已知二次型 f ( x 1 , x 2 , x 3 ) = x T A x f\left(x_{1}, x_{2}, x_{3}\right)=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x} f ( x 1 , x 2 , x 3 ) = x T A x 在正交变换 x = Q y \boldsymbol{x}=\boldsymbol{Q} \boldsymbol{y} x = Q y 下的标准形为 y 1 2 + y 2 2 y_{1}^{2}+y_{2}^{2} y 1 2 + y 2 2 , 且 Q \boldsymbol{Q} Q 的第三列为 ( 2 2 , 0 , 2 2 ) T \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)^{\mathrm{T}} ( 2 2 , 0 , 2 2 ) T .
(I) 求矩阵 A \boldsymbol{A} A ;
(II) 证明 A + E \boldsymbol{A}+\boldsymbol{E} A + E 为正定矩阵, 其中 E \boldsymbol{E} E 为 3 阶单位矩阵.
( I ) 解 因为二次型 x T A x \boldsymbol{x}^{\mathrm{T}} \boldsymbol{A x} x T Ax 在正交变换 x = Q y \boldsymbol{x}=\boldsymbol{Q y} x = Qy 下的标准形为 y 1 2 + y 2 2 y_1^2+y_2^2 y 1 2 + y 2 2 , 所以其系数 1 , 1 , 0 1,1,0 1 , 1 , 0 就是矩阵 A \boldsymbol{A} A 的特征值, 即
Q − 1 A Q = Q T A Q = ( 1 1 0 ) , \displaystyle Q^{-1} \boldsymbol{A} Q=Q^{\mathrm{T}} \boldsymbol{A} Q=\left(\begin{array}{lll}1 & & \\& 1 & \\& & 0\end{array}\right), Q − 1 A Q = Q T A Q = 1 1 0 , 且矩阵 Q Q Q 的第 3 列就是属于特征值 0 的特征向量. 设 ( x 1 , x 2 , x 3 ) T \left(x_1, x_2, x_3\right)^{\mathrm{T}} ( x 1 , x 2 , x 3 ) T 为 A \boldsymbol{A} A 的属于特征值 1 的特征向量. 由于实对称矩阵属于不同特征值的特征向量是正交 的,故有( 2 2 , 0 , 2 2 ) ( x 1 x 2 x 3 ) = 0 , \displaystyle \left(\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)\left(\begin{array}{l}x_1 \\x_2 \\x_3\end{array}\right)=0, ( 2 2 , 0 , 2 2 ) x 1 x 2 x 3 = 0 , 即 x 1 + x 3 = 0 x_1+x_3=0 x 1 + x 3 = 0 , 解得 ξ 1 = ( 2 2 , 0 , − 2 2 ) T , ξ 2 = ( 0 , 1 , 0 ) T \xi_1=\left(\frac{\sqrt{2}}{2}, 0,-\frac{\sqrt{2}}{2}\right)^{\mathrm{T}}, \xi_2=(0,1,0)^{\mathrm{T}} ξ 1 = ( 2 2 , 0 , − 2 2 ) T , ξ 2 = ( 0 , 1 , 0 ) T 即为属于特征值 1 的两个正交单位特征向贯. 以 ξ 1 , ξ 2 \xi_1, \xi_2 ξ 1 , ξ 2 分别为 Q Q Q 的第 1,2 列(或第 2,1 列)得到Q = ( 2 2 0 2 2 0 1 0 − 2 2 0 2 2 ) 或 ( 0 2 2 2 2 1 0 0 0 − 2 2 2 2 ) , \displaystyle \begin{aligned} Q=\left(\begin{array}{ccc}\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \\0 & 1 & 0 \\-\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\end{array}\right) \text { 或 }\left(\begin{array}{ccc}0 & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\1 & 0 & 0 \\0 & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2}\end{array}\right), \end{aligned} Q = 2 2 0 − 2 2 0 1 0 2 2 0 2 2 或 0 1 0 2 2 0 − 2 2 2 2 0 2 2 , Q ⊤ A Q = ( 1 1 0 ) . \displaystyle \begin{aligned} Q^{\top} A Q=\left(\begin{array}{lll}1 & & \\& 1 & \\& & 0\end{array}\right) . \end{aligned} Q ⊤ A Q = 1 1 0 . 从而得A = Q ( 1 1 0 ) Q T = 1 2 ( 1 0 − 1 0 2 0 − 1 0 1 ) \displaystyle \boldsymbol{A}=\boldsymbol{Q}\left(\begin{array}{lll}1 & & \\& 1 & \\& & 0\end{array}\right) \boldsymbol{Q}^{\mathrm{T}}=\frac{1}{2}\left(\begin{array}{ccc}1 & 0 & -1 \\0 & 2 & 0 \\-1 & 0 & 1\end{array}\right) A = Q 1 1 0 Q T = 2 1 1 0 − 1 0 2 0 − 1 0 1 (II) 证法 1 因 A \boldsymbol{A} A 的特征值为 1,1,0, 所以矩阵 A + E \boldsymbol{A}+\boldsymbol{E} A + E 的特征值为 2,2 , 1; 又 A + E \boldsymbol{A}+\boldsymbol{E} A + E 为实对称矩阵, 故 A + E \boldsymbol{A}+\boldsymbol{E} A + E 是正定矩阵 (实对称矩阵正定的一个充要条件是其所有特征值均为正数). 证法 2 分别计算 A + E \boldsymbol{A}+\boldsymbol{E} A + E 的顺序主子式: Δ 1 = 3 2 > 0 , Δ 2 = 3 > 0 , Δ 3 = 4 > 0 \Delta_1=\frac{3}{2}>0, \Delta_2=3>0, \Delta_3=4>0 Δ 1 = 2 3 > 0 , Δ 2 = 3 > 0 , Δ 3 = 4 > 0 , 故 A + E \boldsymbol{A}+\boldsymbol{E} A + E 正定.(本题满分 11 分)
设二维随机变量 ( X , Y ) (X, Y) ( X , Y ) 的概率密度为
f ( x , y ) = A e − 2 x 2 + 2 x y − y 2 , − ∞ < x < + ∞ , − ∞ < y < + ∞ , f(x, y)=A \mathrm{e}^{-2 x^{2}+2 x y-y^{2}},-\infty<x<+\infty,-\infty<y<+\infty, f ( x , y ) = A e − 2 x 2 + 2 x y − y 2 , − ∞ < x < + ∞ , − ∞ < y < + ∞ , 求常数 A A A 及条件概率密度 f η X ( y ∣ x ) f_{\eta X}(y \mid x) f η X ( y ∣ x ) .解
求常数 A A A ,用规范性
性质:对于任何概率密度函数 f ( x , y ) f(x, y) f ( x , y ) ,其在所有可能的 x x x 和 y y y 上的积分等于 1。 应用到给定的 f ( x , y ) f(x, y) f ( x , y ) :对 f ( x , y ) = A e − 2 x 2 + 2 x y − y 2 f(x, y) = A e^{-2x^2 + 2xy - y^2} f ( x , y ) = A e − 2 x 2 + 2 x y − y 2 进行双重积分 ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y = 将 f ( x , y ) 代入 ∫ − ∞ + ∞ ∫ − ∞ + ∞ A e − 2 x 2 + 2 x y − y 2 d x d y \displaystyle \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) \mathrm{d} x \mathrm{~d} y\xlongequal[]{将f(x,y)代入}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A \mathrm{e}^{-2 x^2+2 x y-y^2} \mathrm{~d} x \mathrm{~d} y ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) d x d y 将 f ( x , y ) 代入 ∫ − ∞ + ∞ ∫ − ∞ + ∞ A e − 2 x 2 + 2 x y − y 2 d x d y = 配方用高斯积分 ∫ − ∞ + ∞ ∫ − ∞ + ∞ A e − x 2 − ( y − x ) 2 d x d y \displaystyle \begin{aligned}\xlongequal[]{配方用高斯积分}\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} A \mathrm{e}^{-x^2-(y-x)^2} \mathrm{~d} x \mathrm{~d} y\end{aligned} 配方用高斯积分 ∫ − ∞ + ∞ ∫ − ∞ + ∞ A e − x 2 − ( y − x ) 2 d x d y = 对 y 积分,提出 x A ∫ − ∞ + ∞ e − x 2 d x ∫ − ∞ + ∞ e − ( y − x ) 2 d y \displaystyle \xlongequal[]{对y积分,提出x}A \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \mathrm{~d} x \int_{-\infty}^{+\infty} \mathrm{e}^{-(y-x)^2} \mathrm{~d} y 对 y 积分,提出 x A ∫ − ∞ + ∞ e − x 2 d x ∫ − ∞ + ∞ e − ( y − x ) 2 d y = d y = d x 线性凑微分 A ∫ − ∞ + ∞ e − x 2 d x ∫ − ∞ + ∞ e − ( y − x ) 2 d ( y − x ) \displaystyle \begin{aligned}\xlongequal[dy=dx]{线性凑微分}A \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \mathrm{~d} x \int_{-\infty}^{+\infty} \mathrm{e}^{-(y-x)^2} \mathrm{~d}(y-x)\end{aligned} 线性凑微分 d y = d x A ∫ − ∞ + ∞ e − x 2 d x ∫ − ∞ + ∞ e − ( y − x ) 2 d ( y − x ) = 令 t = y − x A ∫ − ∞ + ∞ e − x 2 d x ∫ − ∞ + ∞ e − t 2 d t = 高斯积分 ∫ − ∞ + ∞ e − t 2 d t π A π , \displaystyle \xlongequal[]{令t=y-x}A \int_{-\infty}^{+\infty} \mathrm{e}^{-x^2} \mathrm{~d} x \int_{-\infty}^{+\infty} \mathrm{e}^{-t^2} \mathrm{~d} t\xlongequal[]{高斯积分\int_{-\infty}^{+\infty} \mathrm{e}^{-t^2} \mathrm{~d} t\sqrt{\pi}}A \pi \text {, } 令 t = y − x A ∫ − ∞ + ∞ e − x 2 d x ∫ − ∞ + ∞ e − t 2 d t 高斯积分 ∫ − ∞ + ∞ e − t 2 d t π A π , 结果:通过使用高斯积分 ∫ − ∞ + ∞ e − t 2 d t = π \displaystyle \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi} ∫ − ∞ + ∞ e − t 2 d t = π ,得到 A π = 1 → 移项 A = 1 π A \pi = 1\xrightarrow[]{移项}A = \frac{1}{\pi} A π = 1 移项 A = π 1 求条件概率密度 f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) = 联合 边缘 f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_X(x)}=\frac{联合}{边缘} f Y ∣ X ( y ∣ x ) = f X ( x ) f ( x , y ) = 边缘 联合
计算边缘概率密度 f X ( x ) f_X(x) f X ( x ) :联合f ( x , y ) f(x, y) f ( x , y ) 对y积分 公式:f X ( x ) = 积分区间 ∫ − ∞ + ∞ f ( x , y ) d y = 代入 f ( x , y ) 1 π ∫ − ∞ + ∞ e − 2 x 2 + 2 x y − y 2 d y \displaystyle f_X(x) \xlongequal[]{积分区间} \int_{-\infty}^{+\infty} f(x, y) dy\xlongequal[]{代入f(x,y)}\frac{1}{\pi} \int_{-\infty}^{+\infty} e^{-2x^2 + 2xy - y^2} dy f X ( x ) 积分区间 ∫ − ∞ + ∞ f ( x , y ) d y 代入 f ( x , y ) π 1 ∫ − ∞ + ∞ e − 2 x 2 + 2 x y − y 2 d y = 对 y 积分,提出常数 x 1 π e − x 2 ∫ − ∞ + ∞ e − ( y − x ) 2 d y = 高斯积分 1 π e − x 2 ⋅ π = 1 π e − x 2 \displaystyle \begin{aligned}\xlongequal[]{对y积分,提出常数x}\frac{1}{\pi} \mathrm{e}^{-x^2} \int_{-\infty}^{+\infty} \mathrm{e}^{-(y-x)^2} \mathrm{~d} y\xlongequal[]{高斯积分}\frac{1}{\pi} \mathrm{e}^{-x^2} \cdot \sqrt{\pi}=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-x^2}\end{aligned} 对 y 积分,提出常数 x π 1 e − x 2 ∫ − ∞ + ∞ e − ( y − x ) 2 d y 高斯积分 π 1 e − x 2 ⋅ π = π 1 e − x 2 结果:f X ( x ) = 1 π e − x 2 f_X(x) = \frac{1}{\sqrt{\pi}} e^{-x^2} f X ( x ) = π 1 e − x 2 。 求条件概率密度f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f_{Y \mid X}(y \mid x) = \frac{f(x, y)}{f_X(x)} f Y ∣ X ( y ∣ x ) = f X ( x ) f ( x , y ) f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) = 代入 1 π e − 2 x 2 + 2 x y − y 2 1 π e − x 2 = 1 π e − x 2 + 2 x y − y 2 = 完全平方 1 π e − ( x − y ) 2 f_{Y \mid X}(y \mid x) = \frac{f(x, y)}{f_X(x)}\xlongequal[]{代入}\frac{\frac{1}{\pi} e^{-2x^2 + 2xy - y^2}}{\frac{1}{\sqrt{\pi}} e^{-x^2}}=\frac{1}{\sqrt{\pi}} \mathrm{e}^{-x^2+2 x y-y^2}\xlongequal[]{完全平方}\frac{1}{\sqrt{\pi}} \mathrm{e}^{-(x-y)^2} f Y ∣ X ( y ∣ x ) = f X ( x ) f ( x , y ) 代入 π 1 e − x 2 π 1 e − 2 x 2 + 2 x y − y 2 = π 1 e − x 2 + 2 x y − y 2 完全平方 π 1 e − ( x − y ) 2 结果:f Y ∣ X ( y ∣ x ) = 1 π e − ( x − y ) 2 f_{Y \mid X}(y \mid x) = \frac{1}{\sqrt{\pi}} e^{-(x-y)^2} f Y ∣ X ( y ∣ x ) = π 1 e − ( x − y ) 2 (本题满分 11 分)
设总体 X X X 的概率分布为
X 1 2 3 P 1 − θ θ − θ 2 θ 2 \begin{array}{c|ccc} X & 1 & 2 & 3 \\ \hline P & 1-\theta & \theta-\theta^{2} & \theta^{2} \end{array} X P 1 1 − θ 2 θ − θ 2 3 θ 2
其中参数 θ ∈ ( 0 , 1 ) \theta \in(0,1) θ ∈ ( 0 , 1 ) 末知. 以 N i N_{i} N i 表示来自总体 X X X 的简单随机样本 (样本容量为 n n n ) 中等于 i i i 的 个数 ( i = 1 , 2 , 3 ) (i=1,2,3) ( i = 1 , 2 , 3 ) . 试求常数 a 1 , a 2 , a 3 a_{1}, a_{2}, a_{3} a 1 , a 2 , a 3 , 使 T = ∑ i = 1 3 a i N i \displaystyle T=\sum_{i=1}^{3} a_{i} N_{i} T = i = 1 ∑ 3 a i N i 为 θ \theta θ 的无偏估计量, 并求 T T T 的方差.
解 记 p 1 = 1 − θ , p 2 = θ − θ 2 , p 3 = θ 2 p_1=1-\theta, p_2=\theta-\theta^2, p_3=\theta^2 p 1 = 1 − θ , p 2 = θ − θ 2 , p 3 = θ 2 . 由于 N i ∼ B ( n , p i ) , i = 1 , 2 , 3 N_i \sim B\left(n, p_i\right), i=1,2,3 N i ∼ B ( n , p i ) , i = 1 , 2 , 3 , 故
E N i = n p i , E N_i=n p_i \text {, } E N i = n p i , 于是E T = a 1 E N 1 + a 2 E N 2 + a 3 E N 3 = n [ a 1 ( 1 − θ ) + a 2 ( θ − θ 2 ) + a 3 θ 2 ] . E T=a_1 E N_1+a_2 E N_2+a_3 E N_3=n\left[a_1(1-\theta)+a_2\left(\theta-\theta^2\right)+a_3 \theta^2\right] . ET = a 1 E N 1 + a 2 E N 2 + a 3 E N 3 = n [ a 1 ( 1 − θ ) + a 2 ( θ − θ 2 ) + a 3 θ 2 ] . 为使 T T T 是 θ \theta θ 的无偏估计量, 必有n [ a 1 ( 1 − θ ) + a 2 ( θ − θ 2 ) + a 3 θ 2 ] = θ , n\left[a_1(1-\theta)+a_2\left(\theta-\theta^2\right)+a_3 \theta^2\right]=\theta, n [ a 1 ( 1 − θ ) + a 2 ( θ − θ 2 ) + a 3 θ 2 ] = θ , 因此a 1 = 0 , a 2 − a 1 = 1 n , a 3 − a 2 = 0 , a_1=0, a_2-a_1=\frac{1}{n}, a_3-a_2=0, a 1 = 0 , a 2 − a 1 = n 1 , a 3 − a 2 = 0 , 由此得a 1 = 0 , a 2 = a 3 = 1 n . a_1=0, a_2=a_3=\frac{1}{n} \text {. } a 1 = 0 , a 2 = a 3 = n 1 . 由于 N 1 + N 2 + N 3 = n N_1+N_2+N_3=n N 1 + N 2 + N 3 = n , 故T = 1 n ( N 2 + N 3 ) = 1 n ( n − N 1 ) = 1 − N 1 n . T=\frac{1}{n}\left(N_2+N_3\right)=\frac{1}{n}\left(n-N_1\right)=1-\frac{N_1}{n} . T = n 1 ( N 2 + N 3 ) = n 1 ( n − N 1 ) = 1 − n N 1 . 注意到 N 1 ∼ B ( n , 1 − θ ) N_1 \sim B(n, 1-\theta) N 1 ∼ B ( n , 1 − θ ) , 故D T = 1 n 2 D N 1 = n ( 1 − θ ) θ n 2 = ( 1 − θ ) θ n . D T=\frac{1}{n^2} D N_1=\frac{n(1-\theta) \theta}{n^2}=\frac{(1-\theta) \theta}{n} . D T = n 2 1 D N 1 = n 2 n ( 1 − θ ) θ = n ( 1 − θ ) θ .