文脈自由文法を4つ組 (N,Σ,P,S) で表す。ただし、N,Σ,P,S をそれぞれ非終端記号の集合、終端記号の集合、生成規則の集合、開始記号とする。Σ 上の文字列 w と終端記号 x∈Σ に対して、∣w∣x を w 中の x の出現回数とする。以下の各問いに答えよ。
- L1={w∈{a,b}∗∣∣w∣a≥3}。ただし Σ1={a,b} である。答えには N1={S,X} を用いよ。
- L2={w∈{a,b}∗∣∣w∣a≥2∣w∣b}。ただし Σ2={a,b} である。答えには N2={S} を用いよ。
- L3={aibjck∣i,j,k≥0 かつ (2i=j または 3j=k)}。ただし Σ3={a,b,c} である。答えには N3={S,V,X,Y,Z} を用いよ。
- L4=∅。
- 有限個の有限長文字列から構成される空でない任意の言語 L5。
We represent a context-free grammar by a quartet (N,Σ,P,S), where N,Σ,P, and S represent the set of non-terminal symbols, the set of terminal symbols, the set of productions, and the start symbol, respectively. For a string over Σ and a terminal symbol x∈Σ, let ∣w∣x denote the number of occurrences of x in w. Answer the following questions.
- L1={w∈{a,b}∗∣∣w∣a≥3}, where Σ1={a,b}. Use N1={S,X} in your answer.
- L2={w∈{a,b}∗∣∣w∣a≥2∣w∣b}, where Σ2={a,b}. Use N2={S} in your answer.
- L3={aibjck∣i,j,k≥0 and (2i=j or 3j=k)}, where Σ3={a,b,c}. Use N3={S,V,X,Y,Z} in your answer.
- L4=∅.
- Any non-empty language L5 which consists of a finite number of finite-length strings.
用四元组 (N,Σ,P,S) 表示上下文无关文法,其中 N,Σ,P 和 S 分别表示非终结符集合、终结符集合、产生式集合和开始符号。对于 Σ 上的字符串 w 和终结符 x∈Σ,令 ∣w∣x 表示 x 在 w 中出现的次数。回答以下问题。
- L1={w∈{a,b}∗∣∣w∣a≥3},其中 Σ1={a,b}。在你的答案中使用 N1={S,X}。
- L2={w∈{a,b}∗∣∣w∣a≥2∣w∣b},其中 Σ2={a,b}。在你的答案中使用 N2={S}。
- L3={aibjck∣i,j,k≥0 and (2i=j or 3j=k)},其中 Σ3={a,b,c}。在你的答案中使用 N3={S,V,X,Y,Z}。
- L4=∅。
- 任何非空语言 L5,其中包含有限数量的有限长度字符串。
Answer to Question A1:
To define a set of production rules P1 for the grammar (N1,Σ1,P1,S) that generates the language L1={w∈{a,b}∗∣∣w∣a≥3}, where N1={S,X} and Σ1={a,b}, we can use the following productions:
- S→aA
- A→aB
- B→aC
- C→bC∣aC∣ϵ
This ensures that every string generated has at least three a's, with any number of a's or b's following.
Answer to Question A2:
To define P2 for the grammar (N2,Σ2,P2,S) that generates L2={w∈{a,b}∗∣∣w∣a≥2∣w∣b}, where N2={S} and Σ2={a,b}, we can use the following productions:
- S→aS
- S→aSa
- S→aSb
- S→ϵ
This ensures that for every b generated, there are at least two a's.
Answer to Question A3:
To define P3 for the grammar (N3,Σ3,P3,S) that generates L3={aibjck∣i,j,k≥0 and (2i=j or 3j=k)}, where N3={S,V,X,Y,Z} and Σ3={a,b,c}, we can use the following productions:
- S→V∣Z
- V→aVbb∣ϵ
- Z→bZccc∣ϵ
- V→aV∣aVc
- Z→aZ∣aZc
This ensures that either the number of b's is twice the number of a's, or the number of c's is three times the number of b's.
Answer to Question B4:
L4=∅ is a context-free language because the empty set is a regular language, and all regular languages are context-free.
Answer to Question B5:
Any non-empty language L5 consisting of a finite number of finite-length strings is a context-free language because finite languages are regular, and all regular languages are context-free.
To create a context-free grammar for the language L3={aibjck∣i,j,k≥0 and (2i=j or 3j=k)} using the specified non-terminals N3={S,V,X,Y,Z}, we can define the grammar as follows:
- Non-terminal symbols (N): {S,V,X,Y,Z}
- Terminal symbols (Σ): {a,b,c}
- Start symbol (S): S
- Production rules (P):
SVXZY→V∣Z→aVbb∣X→cX∣ϵ→bZccc∣Y→aY∣ϵ
Non-terminal V:
- Generates strings where the number of a's is exactly half the number of b's (2i=j), with any number of c's.
- V→aVbb ensures that for every a, there are exactly two b's.
- V→X allows for the addition of any number of c's.
Non-terminal X:
- Generates any number of c's.
- X→cX∣ϵ
Non-terminal Z:
- Generates strings where the number of c's is exactly three times the number of b's (3j=k), with any number of a's.
- Z→bZccc ensures that for every b, there are exactly three c's.
- Z→Y allows for the addition of any number of a's.
Non-terminal Y:
- Generates any number of a's.
- Y→aY∣ϵ
Start symbol S:
- Chooses between generating strings that satisfy 2i=j or 3j=k.
- S→V∣Z
- The grammar ensures that strings generated either satisfy 2i=j with any number of c's or 3j=k with any number of a's.
- Strings that do not satisfy either condition are not generated by the grammar.
This grammar correctly captures the language L3 by providing the necessary production rules to generate all and only the strings that meet the specified conditions.