直交座標系において, x, y, z 軸方向の単位ベクトルをそれぞれ i, j, k とする.ベクトル場 F を
F=xi+2yj+10zk
とする.次の面 S1,S2 および S3 に対する面積分を計算せよ.
- S1 を円筒面 x2+z2=1 (0≤y≤4) とする (上面と底面の無い円筒の表面) .円筒外向き法線ベクトルを用いよ.
- S2 を円筒面の一部 x2+z2=1 (0≤y≤4,0≤z) と長方形面 z=0 (−1≤x≤1,0≤y≤4) からなる半円筒面とする (上面と底面の無い半円筒の表面) .半円筒外向き法線ベクトルを用いよ.
- S3 を円筒面 x2+z2=1 と, 平面 z=0,y=0,x+y=4 で囲まれた領域の境界とする.外向き法線ベクトルを用いよ.
The unit vectors on x, y, and z axes of Cartesian coordinates are denoted by i, j, and k, respectively. Let the vector field F be:
F=xi+2yj+10zk.
Find the integral of F over the following areas S1, S2, and S3:
- S1 is the part of the cylindrical surface x2+z2=1 (0≤y≤4), i.e., the surface of the cylinder without top and bottom disks. Use the normal vector pointing outside the cylinder.
- S2 is the surface consisting of the part of the cylindrical surface x2+z2=1 (0≤y≤4,0≤z) and the rectangular surface z=0 (−1≤x≤1,0≤y≤4), i.e., the surface of the half-cylinder without top and bottom planes. Use the normal vector pointing outside the half-cylinder.
- S3 is the boundary of the region enclosed by the cylindrical surface x2+z2=1, the planes z=0, y=0, and x+y=4. Use the outward pointing normal vector.
We are given the vector field:
F=xi+2yj+10zk
and need to compute the flux integrals over the surfaces S1, S2, and S3.
S1 is the lateral surface of the cylinder x2+z2=1 for 0≤y≤4, with the outward-pointing normal vector.
- Parametrization: r(θ,y)=cosθi+yj+sinθk, where 0≤θ≤2π and 0≤y≤4.
- Outward normal vector: n=cosθi+sinθk.
- Dot product: F⋅n=cos2θ+10sin2θ.
- Integral over S1:
∫S1F⋅dS=∫04∫02π(cos2θ+10sin2θ)dθdy=44π.
S2 consists of the lateral surface of the half-cylinder x2+z2=1 for 0≤y≤4 and z≥0, and the rectangular surface at z=0 for −1≤x≤1 and 0≤y≤4.
- For the half-cylinder part (similar to S1, but with 0≤θ≤π):
∫cylindrical partF⋅dS=22π.
- For the rectangular surface at z=0, the normal vector is −k, and:
F⋅(−k)=−10z=0(since z=0),
so the flux through this part is zero. - Total flux over S2:
∫S2F⋅dS=22π.
S3 is the boundary of the region enclosed by the cylindrical surface x2+z2=1, the planes z=0, y=0, and x+y=4, with the outward-pointing normal vector.
- Using the divergence theorem:
divF=1+2+10=13.
- Volume integral:
∫VdivFdV=13×Volume.
- The volume is bounded by x2+z2≤1, 0≤y≤4−x, giving:
Volume=∫02π∫01∫04−rcosθrdydrdθ=4π.
- Therefore, the flux through S3 is:
∫S3F⋅dS=13×4π=52π.
- Flux over S1: 44π.
- Flux over S2: 22π.
- Flux over S3: 52π.
To solve the problem of integrating the vector field F=xi+2yj+10zk over the specified surfaces, we proceed as follows:
Parameterization:
- Use cylindrical coordinates with r=1, so x=cosθ, z=sinθ, and 0≤y≤4.
- Position vector: r(θ,y)=cosθi+yj+sinθk.
Differential Area Vector:
- Compute partial derivatives: ∂θ∂r=−sinθi+cosθk and ∂y∂r=j.
- Cross product: ∂y∂r×∂θ∂r=cosθi+sinθk.
- This gives the outward-pointing normal vector.
Dot Product:
- F⋅dS=(cosθi+2yj+10sinθk)⋅(cosθi+sinθk)dθdy=(cos2θ+10sin2θ)dθdy.
Integral:
∫S1F⋅dS=∫04∫02π(cos2θ+10sin2θ)dθdy.
- Integrate over θ:
∫02π(cos2θ+10sin2θ)dθ=∫02π(9sin2θ+1)dθ=9π+2π=11π.
- Integrate over y:
∫0411πdy=44π.
- Result for S1: 44π.
Cylindrical Part (S2a):
Rectangular Part (S2b):
Result for S2: 22π+0=22π.
Divergence Theorem:
- Since S3 is a closed surface, use the Divergence Theorem:
∫S3F⋅dS=∫V(∇⋅F)dV.
- Compute divergence:
∇⋅F=∂x∂(x)+∂y∂(2y)+∂z∂(10z)=1+2+10=13.
- Volume V is a cylinder with radius 1, height from y=0 to y=4, cut by the plane x+y=4.
- The volume can be found by integrating over the cylindrical coordinates, considering the bounds imposed by x+y≤4.
Volume Integral:
- Convert to cylindrical coordinates: x=rcosθ, z=rsinθ.
- The plane x+y=4 gives y=4−rcosθ.
- The limits for y are 0≤y≤4−rcosθ.
- Integrate:
∫V13dV=13∫02π∫01∫04−rcosθrdydrdθ.
=13∫02π∫01r(4−rcosθ)drdθ=13(4π−31).
- Result for S3: 13(4π−31).
- For S1: 44π.
- For S2: 22π.
- For S3: 13(4π−31).
要计算面积分 ∫F⋅dS,需要明确如何表达面积微元法向量 dS 并将其与向量场 F 进行点乘。以下是分步说明:
对于给定的曲面 S,面积微元法向量是:
dS=ndS,
其中:
- n 是曲面 S 在每一点的单位法向量。
- dS 是该点处的小面积元。
因此,∫F⋅dS 可以表示为:
∫SF⋅dS=∫S(F⋅n)dS.
我们需要将 dS 和 n 表达为参数形式。
每个曲面 S 可以用参数化的方法表示其点 (x,y,z) 和面积微元 dS。参数化的选择依赖于曲面的定义。
通过参数化 S,我们可以用两个参数 (u,v) 表示曲面上任意一点。参数化函数为 r(u,v),则法向量 n 可由叉积计算:
n∝∂u∂r×∂v∂r.
对该向量进行归一化后得到单位法向量。
将参数化后的 F 和 n 表达为参数形式,计算点积并在参数范围内求积分:
∫SF⋅dS=∫u,vF(r(u,v))⋅n∥∂u∂r×∂v∂r∥dudv.
- 参数化:柱面 x2+z2=1 可用参数 (θ,y) 表示:
r(θ,y)=(cosθ,y,sinθ),0≤θ≤2π,0≤y≤4.
- 法向量:∂θ∂r 和 ∂y∂r 的叉积为:
n=(cosθ,0,sinθ),dS=dθdy.
- 积分表达式:
∫S1F⋅dS=∫02π∫04(xcosθ+2y⋅0+10zsinθ)dθdy.
同理,将半柱面 (0≤z) 与矩形面 z=0 分别参数化,重复上述过程。
利用柱面 x2+z2=1 和各个平面参数化,求出相应的法向量并积分。如果封闭区域完整,可以用高斯散度定理将问题转化为体积分。
将上述结果代入积分表达式,即可逐步计算得到结果。重要的是将 F 和 n 准确写成参数形式,然后依次积分。